Takaya Nozawa (IPMU, University of Tokyo)

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
Herschel study of the dust content of Cassiopeia A Ref: arxiv: v1 Oliver Krause PPT.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
I. Origin of the dust emission from Tycho’s SNR II. Mapping observations of [Fe II] lines and dust emission of IC443 by IRSF & AKARI III. Summary AKARI.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Zorro and the nature of SNe Ia Paolo A. Mazzali Max-Planck Institut für Astrophysik, Garching Astronomy Department and RESearch Centre for the Early Universe,
超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
極めて金属量の低い星形成ガス雲 中でのダスト成長と低質量星の形 成 Nozawa et al. (2012, ApJ, 756, L35) 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構 2012/09/19 共同研究者 : 小笹 隆司(北海道大学)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Detecting Cool Dust in Type Ia Supernova Remnant (ranked as priority grade B for ALMA Cycle2) Takaya Nozawa (NAOJ, 理論研究部 ) and Masaomi Tanaka.
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Unburned carbon in SNe Ia as viewed from (non-)formation of C grains Takaya Nozawa (IPMU, University of Tokyo) 2011/04/13 Condensation efficiency of carbon.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
ALMA observations of Molecules in Supernova 1987A
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
SN 1987A: The Formation & Evolution of Dust in a Supernova Explosion
NAOJ, Division of theoretical astronomy
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Gas and Dust Layers from Cassiopeia A’s Explosive Nucleosynthesis
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Gas and Dust Layers from Cassiopeia A’s Explosive Nucleosynthesis
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation of dust and molecules in supernovae
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

Takaya Nozawa (IPMU, University of Tokyo) Are Type Ia supernovae important sources of interstellar dust? (Ia型超新星は星間ダストの重要な供給源か?) Takaya Nozawa (IPMU, University of Tokyo) Collaborators: K. Maeda (IPMU) T. Kozasa (Hokkaido Univ.) M. Tanaka (NAOJ) K. Nomoto (IPMU) H. Umeda (Univ. of Tokyo)

1-1. Introduction 〇 Type Ia supernovae (SNe Ia) - thermonuclear explosions of C+O white dwarfs with   the mass close to Chandrasekhar limit (~1.4 Msun) ・ deflagration (Nomoto+76, 84) ➔ subsonic wave, unburned C in the outer layer ・ (delayed) detonation (Khokhlov 91a, 91b) ➔ supersonic wave, burning almost all C - synthesize a significant amount of Fe-peak and intermediate-mass elements such as Si, Mg, and Ca ➔ play a critical role in the chemical evolution ➔ possible sources of interstellar dust?

1-2. Type Ia SNe are sources of dust? 〇 Suggestions on dust formation in SNe Ia - SNe Ia may be producers of Fe grains (Tielens 98; Dwek 98) - the isotopic signature of presolar type X SiC grains can be explained if produced in SNe Ia (Clayton+97) 〇 IR Observations of SNe Ia and Type Ia SNRs - no evidence for dust formation in normal SNe Ia - no evidence for ejecta-dust in young Type Ia SNRs Tycho SNR (Douvion+01, but see Ishihara+10) Kepler SNR (Douvion+01, Blair+07) young Type Ia SNRs in LMC (Borkowski+06, Seok+08) ➔ shock-heated interstellar dust of < 10-2 Msun

1-3. Aim of our study 〇 Questions vs. 〇 Questions - Are there any differences in formation process of dust between SNe Ia and (Type II) CCSNe? - Is it possible for dust grains to form in SNe Ia ? 〇 Dust formation calculation in SNe Ia ➔ chemical composition, size, and mass of dust that can condense in the ejecta of SNe Ia ➔ dependence of dust formation process on SN types ➔ implication on the outermost layer in SNe Ia ➔ survival of newly formed dust against destruction by the reverse shock

elemental composition 2-1. Model of SNe Ia (1) elemental composition 〇 Type Ia SN model C-deflagration W7 model (Nomoto+84; Thielemann+86)  - Meje = 1.38 Msun   - Ekin = 1.3x1051 erg   - M(56Ni) = 0.6 Msun ## M(56Ni) ~ 0.06 Msun in typical CCSNe   - stratified distribution (no mixing of elements) ## This assumption is supported observationally (e.g. Mazzali+08; Tanaka+11) 0.1 Msun of C and O remained unburned in the outermost layer with MC/MO ~ 1

2-2. Model of SNe Ia (2) hydrodynamic model - The gas density in SNe red lines : SNe Ia  ・ Meje = 1.38 Msun  ・ Ekin = 1.3x1051 erg blue lines : Type II-P SNe  ・ Meje = 20 Msun  ・ Ekin = 1.0x1051 erg  ・ Menv = 13.2 Msun - The gas density in SNe Ia is more than 3 orders of magnitude lower than that in SNe II-P - The gas temperature in SNe Ia decreases more quickly

2-3. Calculation of dust formation 〇 nucleation and grain growth theory (Nozawa+03, 08, 10) - sticking probability : αs = 1.0 and 0.1 - LTE condition : Td = T (newly formed dust has the same temperature as the gas) The use of the same prescription enables the direct comparison with our earlier results for SNe II - steady-state nucleation rate 2 - grain growth rate

Condensation temperature 3-1. Results (1): Condensation time of dust Condensation time Condensation temperature - different dust species form in different layers ・ Fe and Ni grains cannot condense significantly ・ SiC can never condense - condensation time of dust  : tc = 100-300 days (tc > ~300 days in SNe II) Nozawa+11, ApJ, 736, 45

3-2. Results (2): Average radius of dust SN Ia SN II-P 0.01 μm 0.01 μm SN IIb the radius of dust formed in H-stripped SNe is small ・ SNe IIb/Ia with thin/no H-env ➔ aave < 0.01 μm ・ SN II-P with massive H-env ➔ aave > 0.01 μm average radius of dust  : aave < ~0.01 μm because of low density of gas in the ejecta 0.01 μm Nozawa+11, ApJ, 736, 45

with molecule formation with no molecule formation 3-3. Results (3): Mass of each dust species with molecule formation with no molecule formation 0.03 Msun 0.07 Msun T ≠Td 0.08 Msun 0.08 Msun Maximum mass of dust formed in SNe Ia : 0.1-0.2 Msun ref. 0.1-1.0 Msun for SNe II Formation of C grain follows the presence of C atoms Nozawa+11, ApJ, 736, 45

3-4. Survival of dust in Type Ia SNRs - 10-3 Msun of dust can survive for nH ~ 0.01 cm-3 but too low ISM density - typical gas density around SNe Ia   ➔ nH,0 = 1.0-5.0 cm-3 (Borkowski+06) newly formed grains are completely destroyed for ISM density of nH > 0.1 cm-3 SNe Ia are unlikely to be major sources of dust

4-1. Multi-wavelength view of Kepler SNR Gomez, Clark, TN, +11, MNRAS, accepted ○ Kepler ・ Type Ia or Ib ・ t = 407 yr ・ d ~ 4.0 kpc (Blair+07) ・ radius of FS: 103”(2.0 pc) ・ radius of RS: 80”(1.6 pc) ・ ambient gas   density: n0 ~ 5.0 cm-3 70 μm 100 μm 160 μm 250 μm 350 μm 500 μm 850 μm 6 cm CO At λ >= 160 µm, it is difficult to disentangle any SNR emission from the large-scale interstellar structure

4-2. Origin of dust in Kepler Hα and 70 μm X-ray and 70 μm warm Two-component dust warm: 84 K, 3.5x10-3 Msun cold: 19 K, 2.2 Msun cold ・ The dust originates from the shocked circumstellar medium ・ There is no evidence for a cool dust component in the ejecta

4-3. Multi-wavelength view of Tycho SNR Gomez, Clark, TN, +11, MNRAS, accepted ○ Tycho ・ Type Ia ・ t = 439 yr ・ d ~ 3.8 kpc (Krause+07) ・ radius of FS: 251”(4.6 pc) ・ radius of RS: 183”(3.4 pc) ・ ambient gas   density: n0 ~ 3.0 cm-3 CO 18 cm 24 μm 70 μm 100 μm 160 μm 250 μm 350 μm 500 μm Two bright components in the NE and NW at 70 µm corresponds to peaks in 24 µm emission

4-4. Origin of dust in Tycho CO and 70 and 250 μm X-ray and 70 μm warm Two-component dust warm: 90 K, 8.6x10-3 Msun cold: 21 K, 4.0 Msun cold ・ The dust originates from the shocked interstellar medium ・ There is no evidence for a cool dust component in the ejecta

5-1. Comparison with theoretical calculations ・ Nozawa et al. (2011) model - dust mass at dust formation 0.2 Msun for αs = 1 and no molecular formation * observed dust masses: 3.1x10-3 Msun for Kepler 8.6x10-3 Msun for Tycho dust mass at 400 (440) yr 8.8(8.4)x10-2 Msun for n=1 /cc 2.6(2.3)x10-2 Msun for n=3 /cc 1.7(1.4)x10-2 Msun for n=5 /cc ➔ the surviving dust mass is higher than observed ones ・ 0.1 Msun case with molecular formation dust mass at 400 yr 6x10-2 Msun for n=1 /cc 1x10-2 Msun for n=3 /cc 8x10-3 Msun for n=5 /cc

5-2. Comparison with theoretical calculations ・ IR emission region - in Kepler 95”-103” (1.8-2.0 pc) - in Tycho 220”-251” (4.0-4.6 pc) The model-predicted position of newly formed dust ~90” for Kepler (n0 ~ 5.0 cm-3) ~190” for Tycho (n0 ~ 3.0 cm-3)  ➔ The positions of supernova dust do not match emission region seen with Herschel Model predicts the unshocked Fe grains ➔ Herschel does not detect any significant mass of cool dust in the inner ejecta n = 3 cm-3

Summary - C, silicate, Si, and FeS grains can condense in the ejecta of SNe Ia at 100-300 days (>300 days in SNe II) - Due to the low ejecta density, the average radii of dust are below 0.01 μm, smaller than those in SNe II-P - The total mass of dust that can form in the ejecta of SNe Ia is up to 0.1-0.2 Msun - For the IS density of nH,0 > 0.1 cm-3, the newly formed grains are completely destroyed within SNRs ➔ SNe Ia are unlikely to be main producers of dust - Herschel observations do not find evidence for freshly- formed supernova dust in Kepler and Tycho SNRs

5. Conclusion ・ Herschel observations do not find evidence for freshly- formed supernova dust in Kepler and Tycho SNRs ➔ Type Ia SNe do not produce massive iron grains ・ warm dust in Kepler dust mass of 3.1x10-3 Msun, which originates from swept-up circumstellar dust ・ warm dust in Tycho dust mass of 8.6x10-3 Msun, which originates from swept-up interstellar dust ・ The observed mass of warm dust is lower than the model predicts ➔ dust formation in SNe Ia may be inhibited, or newly formed dust may be destroyed efficiently