Thermochemistry Chapter 6

Slides:



Advertisements
Similar presentations
Thermochemistry Chapter 6
Advertisements

Standard Enthalpy (Ch_6.6) The heat change that results when 1 mole of a compound is formed from its elements at a pressure of 1 Atm.
1. 2 Ludwig Boltzmann (1844 – 1906) who spent much of his life studying statistical mechanics died by his own hand. Paul Ehrenfest (1880 – 1933), carrying.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 5. Heat - the transfer of thermal energy between two bodies that are at different temperatures Energy Changes in Chemical Reactions.
Energy Relationships in Chemical Reactions
Thermochemistry THERMOCHEMISTRY THERMOCHEMISTRY, is the study of the heat released or absorbed by chemical and physical changes. 1N = 1Kg.m/s 2, 1J =
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Thermochemistry Chapter 7 CHEMISTRY - DMCU 1233 Fakulti Kejuruteraan Mekanikal, UTeM Lecturer: IMRAN SYAKIR BIN MOHAMAD MOHD HAIZAL BIN MOHD HUSIN NONA.
Thermochemistry ENERGY CHANGES.. Energy is the capacity to do work Thermal energy is the energy associated with the random motion of atoms and molecules.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
A Comparison of  H and  E 2Na (s) + 2H 2 O (l) 2NaOH (aq) + H 2 (g)  H = kJ/mol  E =  H - P  V At 25 0 C, 1 mole H 2 = 24.5 L at 1 atm P 
Thermochemistry Chapter 8.
Thermochemistry Chapter 6 Dr. Ali Bumajdad.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Presentation.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Presentation.
Thermochemistry Chapter 6. Thermochemistry is the study of heat change in chemical reactions.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
THERMOCHEMISTRY. Thermochemistry Chapter 6 Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or.
Thermochemistry Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings. Endothermic process.
Energy Relationships in Chemical Reactions Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acknowledgement Thanks to The McGraw-Hill.
Thermochemistry Chapters 6 and 18.
Energy Relationships in Chemical Reactions
Thermochemistry Chapter 6
Thermochemistry.
Energy Relationships in Chemical Reactions
Thermochemistry Unit Chemistry 12
Energy Relationships in Chemical Reactions
Thermochemistry Chapter 6
Spontanaity, Entropy, Enthalpy & Free Energy
Copyright © Cengage Learning. All rights reserved
General Chemistry CHEM 101 Dr. Mohamed El-Newehy
Thermochemistry Chapter 8.
THERMOCHEMISTRY.
Chapter 5 Thermochemistry
General Chemistry CHEM 101 (3+1+0).
General Chemistry CHEM 101 Dr. Mohamed El-Newehy
Chapter 5 Thermochemistry.
General Chemistry CHEM 101 (3+1+0).
Unit 8: Thermochemistry
General Chemistry CHEM 101 (3+1+0).
Thermochemistry Chapter 6
Energy and Chemical Change
General Chemistry CHEM 101 (3+1+0).
General Chemistry CHEM 101 Dr. Mohamed El-Newehy
Chapter 4 Thermochemistry.
Chapter 4 Thermochemistry.
Thermochemistry Unit 7.
Thermochemistry Chapter 6
Copyright©2000 by Houghton Mifflin Company. All rights reserved.
Thermochemistry Chapter 5
Thermochemistry Chapter 6
Thermochemistry Part 2 – enthalpy.
Chapter 4 Thermochemistry.
Heat in Chemical Reactions
Lecture 5: Thermochemistry Course Instructor: HbR
Thermochemistry ENERGY CHANGES ..
Thermochemistry Chapter 6
Thermochemistry Chapter 6
Thermochemistry.
Chapter 6 Thermochemistry.
Thermochemistry Chapter 6
Thermochemistry Chapter 6
Thermochemistry Chapter 6.
Presentation transcript:

Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

Thermochemistry is the study of heat change in chemical reactions.

Types of systems The system is the specific part of the universe that is of interest in the study. open closed isolated Exchange: mass & energy energy nothing 6.2

Energy Changes in Chemical Reactions Heat is the transfer of thermal energy between two bodies that are at different temperatures. Temperature is a measure of the thermal energy. Temperature = Thermal Energy 6.2

2H2 (g) + O2 (g) 2H2O (l) + energy Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings. 2H2 (g) + O2 (g) 2H2O (l) + energy H2O (g) H2O (l) + energy Endothermic process is any process in which heat has to be supplied to the system from the surroundings. energy + H2O (s) H2O (l) energy + 2HgO (s) 2Hg (l) + O2 (g) 6.2

Exothermic Endothermic 6.2

Thermodynamics is the scientific study of the interconversion of heat and other kinds of energy. We study the changes in the state of a system, which is defined by the value of macroscopic properties,e.g. composition, energy, pressure, volume, temperature. State functions are properties that are determined by the state of the system, regardless of how that condition was achieved. E.g. energy, pressure, volume, temperature DE = Efinal - Einitial DP = Pfinal - Pinitial DV = Vfinal - Vinitial DT = Tfinal - Tinitial Potential energy of hiker 1 and hiker 2 is the same even though they took different paths. 6.3

First law of thermodynamics – energy can be converted from one form to another, but cannot be created or destroyed. DEsystem + DEsurroundings = 0 or DEsystem = -DEsurroundings C3H8 + 5O2 3CO2 + 4H2O Exothermic chemical reaction! Chemical energy lost by combustion = Energy gained by the surroundings system surroundings 6.3

Another form of the first law for DEsystem DE = q + w DE is the change in internal energy of a system q is the heat exchange between the system and the surroundings w is the work done on (or by) the system 6.3

What is the sign of w and q? Heat (q)/ work(W) are not state functions. The value depends on the path of the process and vary accordingly. D q= qfinal - qinitial Dw = wfinal - winitial X What is the change in energy (J) of the gas when a gas expends and does P-V work on the surroundings equal to 325 J and at the same time absorbs 127 J of heat from the surroundings? What is the sign of w and q? DE = q + w = 127 J-325J = -198J DE = q + w, E is a state function

DH = H (products) – H (reactants) Enthalpy (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure. H =E+PV Enthalpy of reactions DH = H (products) – H (reactants) DH = heat given off or absorbed during a reaction at constant pressure

Thermochemical Equations Is DH negative or positive? System absorbs heat Endothermic DH > 0 6.01 kJ are absorbed for every 1 mole of ice that melts at 00C and 1 atm. H2O (s) H2O (l) DH = 6.01 kJ/mol 6.4

Thermochemical Equations Is DH negative or positive? System gives off heat Exothermic DH < 0 890.4 kJ are released for every 1 mole of methane that is combusted at 250C and 1 atm. CH4 (g) + 2O2 (g) CO2 (g) + 2H2O (l) DH = -890.4 kJ/mol Note: the per mol in the unit means that this the enthalpy change per mole of the reaction as it is written. 6.4

Thermochemical Equations- show enthalpy changes as well as the mole relationship. The stoichiometric coefficients always refer to the number of moles of a substance H2O (s) H2O (l) DH = 6.01 kJ/mol If you reverse a reaction, the sign of DH changes H2O (l) H2O (s) DH = -6.01 kJ/mol If you multiply both sides of the equation by a factor n, then DH must change by the same factor n. 2H2O (s) 2H2O (l) DH = 2 x 6.01 = 12.0 kJ/mol 6.4

Thermochemical Equations The physical states of all reactants and products must be specified in thermochemical equations. H2O (s) H2O (l) DH = 6.01 kJ/mol H2O (l) H2O (g) DH = 44.0 kJ/mol How much heat is evolved when 266 g of white phosphorus (P4) burn in air? P4 (s) + 5O2 (g) P4O10 (s) DH = -3013 kJ/mol 1 mol P4 123.9 g P4 x -3013 kJ 1 mol P4 x 266 g P4 = -6470 kJ 6.4

Practice problem of chap6:Q2 Consider the reaction below:  2CH3OH(l) + 3O2(g)  4H2O(l) + 2CO2(g) ∆H = -1452.8 kJ/mol  What is the value of ∆H for the reaction of  8H2O(l) + 4CO2(g)  4CH3OH (l) + 6O2 (g)? If you reverse a reaction, the sign of ΔH changes. If you multiply both sides of the equation by a factor n, then ∆H must change by the same factor n. ∆H = 2*(+1452.8 kJ/mol) = +2905.6 KJ/mol Practice problem of chap6:Q2

Calorimetry- the measurement of heat. The specific heat (s) of a substance is the amount of heat (q) required to raise the temperature of one gram of the substance by one degree Celsius. Heat (q) absorbed or released: q = m x s x Dt Dt = tfinal - tinitial 6.5

Dt = tfinal – tinitial = 50C – 940C = -890C How much heat is given off when an 869 g iron bar cools from 940C to 50C? s of Fe = 0.444 J/g • 0C Dt = tfinal – tinitial = 50C – 940C = -890C q = msDt = 869 g x 0.444 J/g • 0C x –890C = -34,000 J 6.5

Practice problem of chap6:Q5 A sheet of gold weighing 10.0 g and at a temperature of 18.0oC is placed flat on a sheet of iron weighing 20.0 g and at a temperature of 55.6oC. What is the final temperature (oC) of the combined metals? Assume that no heat is lost to the surroundings. The specific heat of iron and gold are o.444 and 0.129 J/g.oC , respectively. No heat is lost to the surroundings: heat absorbed by the colder object gold = - heat released by the hotter object iron. qgold+qiron =0, qgold =- qiron q = m x s x Δt, 10.0g*0.129J/g.oC(T-18.0)= 20.0g*0.444 J/g.oC*(55.6-T), T=50.7oC   Practice problem of chap6:Q5

Standard enthalpy of formation and reaction Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest? Establish an arbitrary scale with the standard enthalpy of formation (DH0) as a reference point for all enthalpy expressions. f Standard enthalpy of formation (DH0) is the heat change that results when one mole of a compound is formed from its elements at a pressure of 1 atm. “0”-standard state at 1atm; “f”-formation f The standard enthalpy of formation of any element in its most stable form is zero. DH0 (O2) = 0 f DH0 (C, graphite) = 0 f DH0 (O3) = 142 kJ/mol f DH0 (C, diamond) = 1.90 kJ/mol f 6.6

6.6

The standard enthalpy of reaction (DH0 ) is the enthalpy of a reaction carried out at 1 atm. rxn aA + bB cC + dD DH0 rxn dDH0 (D) f cDH0 (C) = [ + ] - bDH0 (B) aDH0 (A) DH0 rxn nDH0 (products) f = S mDH0 (reactants) - Hess’s Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps. (Enthalpy is a state function. It doesn’t matter how you get there, only where you start and end.) 6.6

2C6H6 (l) + 15O2 (g) 12CO2 (g) + 6H2O (l) Benzene (C6H6) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene combusted? The standard enthalpy of formation of benzene is 49.04 kJ/mol. 2C6H6 (l) + 15O2 (g) 12CO2 (g) + 6H2O (l) DH0 rxn nDH0 (products) f = S mDH0 (reactants) - DH0 rxn 6DH0 (H2O) f 12DH0 (CO2) = [ + ] - 2DH0 (C6H6) DH0 rxn = [ 12x(–393.5) + 6x(–285.8) ] – [ 2x49.04 ] = -5946 kJ/mol -5946 kJ 2 mol C6H6 = - 2973 kJ/mol C6H6 6.6

Practice problem of chap6:Q8 Calculate the standard enthalpy change (kJ/mol) for the reaction   2Al(s) + Fe2O3(s)  2Fe(s) + Al2O3(s)   Given that   2Al(s) + 3/2O2(g)  Al2O3(s) ∆H = -1669.8 kJ/mol 2Fe(s) + 3/2O2(g)  Fe2O3(s) ∆H = -822.2 kJ/mol Indirect method:Hess’s Law 2Al(s) + 3/2O2(g)  Al2O3(s) ∆H = -1669.8 kJ/mol +Fe2O3(s)2Fe(s) + 3/2O2(g) ∆H = 822.2 kJ/mol 2Al(s) + Fe2O3(s)  2Fe(s) + Al2O3(s) ∆H = -1669.8 +822.2=-847.6 kJ/mol Practice problem of chap6:Q8

Calculate the standard enthalpy of formation of CS2 (l) given that: C(graphite) + O2 (g) CO2 (g) DH0 = -393.5 kJ rxn S(rhombic) + O2 (g) SO2 (g) DH0 = -296.1 kJ rxn CS2(l) + 3O2 (g) CO2 (g) + 2SO2 (g) DH0 = -1072 kJ rxn 1. Write the enthalpy of formation reaction for CS2 C(graphite) + 2S(rhombic) CS2 (l) 2. Add the given rxns so that the result is the desired rxn. rxn C(graphite) + O2 (g) CO2 (g) DH0 = -393.5 kJ 2S(rhombic) + 2O2 (g) 2SO2 (g) DH0 = -296.1x2 kJ rxn + CO2(g) + 2SO2 (g) CS2 (l) + 3O2 (g) DH0 = +1072 kJ rxn C(graphite) + 2S(rhombic) CS2 (l) DH0 = -393.5 + (2x-296.1) + 1072 = 86.3 kJ rxn 6.6