Complex Numbers in Polar Form; DeMoivre’s Theorem 6.5

Slides:



Advertisements
Similar presentations
Trigonometric (Polar) Form of Complex Numbers
Advertisements

10.4 Trigonometric (Polar) Form of Complex Numbers
Trigonometric Form of a Complex Number
Slide 6-1 COMPLEX NUMBERS AND POLAR COORDINATES 8.1 Complex Numbers 8.2 Trigonometric Form for Complex Numbers Chapter 8.
Complex Numbers Consider the quadratic equation x2 + 1 = 0.
GEOMETRIC REPRESENTATION OF COMPLEX NUMBERS A Complex Number is in the form: z = a+bi We can graph complex numbers on the axis shown below: Real axis.
Pre-Calculus Chapter 6 Additional Topics in Trigonometry.
10.1 Complex Numbers Definition:
8.3 THE COMPLEX PLANE & DEMOIVRE’S THEOREM Precalculus.
11.2 Geometric Representations of Complex Numbers.
Objective Perform operations with complex numbers.
6.5 Complex Numbers in Polar Form. Copyright © 2014, 2010, 2007 Pearson Education, Inc. 2 Objectives: Plot complex number in the complex plane. Find the.
Laws of Sines and Cosines
Mrs. Rivas International Studies Charter School.Objective: Plot complex numberPlot complex number in the complex plane. absolute valueFind the absolute.
COMPLEX NUMBER SYSTEM 1. COMPLEX NUMBER NUMBER OF THE FORM C= a+Jb a = real part of C b = imaginary part. 2.
Complex Numbers. Complex number is a number in the form z = a+bi, where a and b are real numbers and i is imaginary. Here a is the real part and b is.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved Vectors, Operations, and the Dot Product 7.5Applications of Vectors Applications.
Chapter 6 ADDITIONAL TOPICS IN TRIGONOMETRY. 6.1 Law of Sines Objectives –Use the Law of Sines to solve oblique triangles –Use the Law of Sines to solve,
Complex Numbers in Polar Form; DeMoivre’s Theorem
Copyright © Cengage Learning. All rights reserved. 6.5 Trigonometric Form of a Complex Number.
The Complex Plane; DeMoivre's Theorem- converting to trigonometric form.
9.7 Products and Quotients of Complex Numbers in Polar Form
Copyright © 2009 Pearson Education, Inc. CHAPTER 8: Applications of Trigonometry 8.1The Law of Sines 8.2The Law of Cosines 8.3Complex Numbers: Trigonometric.
Sec. 6.6b. One reason for writing complex numbers in trigonometric form is the convenience for multiplying and dividing: T The product i i i involves.
5.6 Quadratic Equations and Complex Numbers
DeMoivre’s Theorem The Complex Plane. Complex Number A complex number z = x + yi can be interpreted geometrically as the point (x, y) in the complex plane.
The Law of Sines.
Complex Numbers in Polar Form
Slide Copyright © 2008 Pearson Education, Inc. Publishing as Pearson Addison-Wesley.
Copyright © 2009 Pearson Addison-Wesley Complex Numbers, Polar Equations, and Parametric Equations.
Section 6.5 Complex Numbers in Polar Form. Overview Recall that a complex number is written in the form a + bi, where a and b are real numbers and While.
Section 8.1 Complex Numbers.
Express each number in terms of i.
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 8 Complex Numbers, Polar Equations, and Parametric Equations.
The Complex Plane; De Moivre’s Theorem. Polar Form.
Section 5.3 – The Complex Plane; De Moivre’s Theorem.
Lesson 78 – Polar Form of Complex Numbers HL2 Math - Santowski 11/16/15.
9.3 Complex Numbers; The Complex Plane; Polar Form of Complex Numbers.
Jeopardy! for the Classroom. Real Numbers Complex Numbers Polar Equations Polar Graphs Operations w/ Complex Numbers C & V
Polar Coordinates z=rcisӨ
Copyright © 2009 Pearson Addison-Wesley De Moivre’s Theorem; Powers and Roots of Complex Numbers 8.4 Powers of Complex Numbers (De Moivre’s.
Copyright © Cengage Learning. All rights reserved. 6 Additional Topics in Trigonometry.
10.3 Polar Form of Complex Numbers. We have explored complex numbers as solutions. Now we connect to both the rectangular and polar planes. Every complex.
Copyright © 2007 Pearson Education, Inc. Slide Trigonometric (Polar) Form of Complex Numbers The Complex Plane and Vector Representations Call.
Applications of Trigonometric Functions
 Write the expression as a complex number in standard form.  1.) (9 + 8i) + (8 – 9i)  2.) (-1 + i) – (7 – 5i)  3.) (8 – 5i) – ( i) Warm Up.
1) Trig form of a Complex # 2) Multiplying, Dividing, and powers (DeMoivre’s Theorem) of Complex #s 3) Roots of Complex #s Section 6-5 Day 1, 2 &3.
Trig form of Complex Numbers Objective: Be able to operate with complex numbers, and be able to convert complex numbers into Trig Form and vise versa.
IMAGINARY NUMBERS AND DEMOIVRE’S THEOREM Dual 8.3.
The Geometry of Complex Numbers Section 9.1. Remember this?
DeMoivre’s Theorem Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 To write a complex number in trigonometric form,
Trigonometric Form of a Complex Number  Plot complex numbers in the complex plane and find absolute values of complex numbers.  Write the trigonometric.
Trigonometric Form of Complex Numbers. Real Axis Imaginary Axis Remember a complex number has a real part and an imaginary part. These are used to plot.
Additional Topics in Trigonometry
Start Up Day 54 PLOT the complex number, z = -4 +4i
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
10.3 Polar Form of Complex Numbers
Copyright © 2017, 2013, 2009 Pearson Education, Inc.
Operations with Complex Numbers
11.2 – Geometric Representation of Complex Numbers
Trigonometry Section 11.2 Write and graph complex numbers in polar form. Multiply complex numbers. To represent the complex number a+ bi graphically,
The imaginary unit i is defined as
9 Graphs and Graphing.
Complex Numbers, the Complex Plane & Demoivre’s Theorem
9.3 Complex Numbers; The Complex Plane; Polar Form of Complex Numbers
Complex Numbers: Trigonometric Form
Trigonometric (Polar) Form of Complex Numbers
Complex Numbers and i is the imaginary unit
Complex Numbers and DeMoivre’s Theorem
6.5 Complex Numbers in Polar Form: DeMoivre’s Theorem
Presentation transcript:

Complex Numbers in Polar Form; DeMoivre’s Theorem 6.5

The Complex Plane We know that a real number can be represented as a point on a number line. By contrast, a complex number z = a + bi is represented as a point (a, b) in a coordinate plane, shown below. The horizontal axis of the coordinate plane is called the real axis. The vertical axis is called the imaginary axis. The coordinate system is called the complex plane. Every complex number corresponds to a point in the complex plane and every point in the complex plane corresponds to a complex number. Imaginary axis Real axis a b z = a + bi

Text Example Plot in the complex plane: a. z = 3 + 4i b. z = -1 – 2i c. z = -3 d. z = -4i Solution We plot the complex number z = 3 + 4i the same way we plot (3, 4) in the rectangular coordinate system. We move three units to the right on the real axis and four units up parallel to the imaginary axis. -5 -4 -3 -2 1 2 3 4 5 z = 3 + 4i z = -1 – 2i The complex number z = -1 – 2i corresponds to the point (-1, -2) in the rectangular coordinate system. Plot the complex number by moving one unit to the left on the real axis and two units down parallel to the imaginary axis.

Text Example cont. Plot in the complex plane: a. z = 3 + 4i b. z = -1 – 2i c. z = -3 d. z = -4i Solution Because z = -3 = -3 + 0i, this complex number corresponds to the point (-3, 0). We plot –3 by moving three units to the left on the real axis. -5 -4 -3 -2 1 2 3 4 5 z = 3 + 4i z = -3 Because z = -4i = 0 – 4i, this complex number corresponds to the point (0, -4). We plot the complex number by moving three units down on the imaginary axis. z = -4i z = -1 – 2i

The Absolute Value of a Complex Number The absolute value of the complex number a + bi is

Example Determine the absolute value of z=2-4i Solution:

Polar Form of a Complex Number The complex number a + bi is written in polar form as z = r (cos  + i sin  ) where a = r cos  , b = r sin  , and tan =b/a The value of r is called the modulus (plural: moduli) of the complex number z, and the angle  is called the argument of the complex number z, with 0 <  < 2

Text Example Plot z = -2 – 2i in the complex plane. Then write z in polar form. Solution The complex number z = -2 – 2i, graphed below, is in rectangular form a + bi, with a = -2 and b = -2. By definition, the polar form of z is r(cos  + i sin  ). We need to determine the value for r and the value for  , included in the figure below. Imaginary axis 2 è Real axis -2 2 r -2 z = -2 – 2i

Text Example cont. Solution Since tan p4 = 1, we know that  lies in quadrant III. Thus,

Product of Two Complex Numbers in Polar Form Let z1 = r1 (cos 1+ i sin  1) and z2 = r2 (cos  2 + i sin  2) be two complex numbers in polar form. Their product, z1z2, is z1z2 = r1 r2 (cos ( 1 +  2) + i sin ( 1 +  2)) To multiply two complex numbers, multiply moduli and add arguments.

z1 = 4(cos 50º + i sin 50º) z2 = 7(cos 100º + i sin 100º) Text Example Find the product of the complex numbers. Leave the answer in polar form. z1 = 4(cos 50º + i sin 50º) z2 = 7(cos 100º + i sin 100º) Solution z1z2 = [4(cos 50º + i sin 50º)][7(cos 100º + i sin 100º)] Form the product of the given numbers. Multiply moduli and add arguments. = (4 · 7)[cos (50º + 100º) + i sin (50º + 100º)] = 28(cos 150º + i sin 150º) Simplify.

Quotient of Two Complex Numbers in Polar Form Let z1 = r1 (cos 1 + i sin 1) and z2 = r2 (cos 2 + i sin 2) be two complex numbers in polar form. Their quotient, z1/z2, is To divide two complex numbers, divide moduli and subtract arguments.

DeMoivre’s Theorem Let z = r (cos  + i sin ) be a complex numbers in polar form. If n is a positive integer, z to the nth power, zn, is

Text Example Find [2 (cos 10º + i sin 10º)]6. Write the answer in rectangular form a + bi. Solution By DeMoivre’s Theorem, [2 (cos 10º + i sin 10º)]6 = 26[cos (6 · 10º) + i sin (6 · 10º)] Raise the modulus to the 6th power and multiply the argument by 6. = 64(cos 60º + i sin 60º) Simplify. Write the answer in rectangular form. Multiply and express the answer in a + bi form.

DeMoivre’s Theorem for Finding Complex Roots Let =r(cos+isin) be a complex number in polar form. If 0,  has n distinct complex nth roots given by the formula

Example Find all the complex fourth roots of 81(cos60º+isin60º) Solution:

Example cont. Find all the complex fourth roots of 81(cos60º+isin60º) Solution: