Molecular Dissection of N2B Cardiac Titin’s Extensibility

Slides:



Advertisements
Similar presentations
Thomas J. English, Daniel A. Hammer  Biophysical Journal 
Advertisements

Structural Changes of Cross-Bridges on Transition from Isometric to Shortening State in Frog Skeletal Muscle  Naoto Yagi, Hiroyuki Iwamoto, Katsuaki Inoue 
Eric J. Stöhr, PhD, Hiroo Takayama, MD, PhD, Giovanni Ferrari, PhD 
Volume 97, Issue 8, Pages (October 2009)
Steered Molecular Dynamics Studies of Titin I1 Domain Unfolding
Influence of Chain Length and Unsaturation on Sphingomyelin Bilayers
R. Jay Mashl, H. Larry Scott, Shankar Subramaniam, Eric Jakobsson 
Volume 113, Issue 12, Pages (December 2017)
Work Done by Titin Protein Folding Assists Muscle Contraction
Partially Assembled Nucleosome Structures at Atomic Detail
Joseph M. Johnson, William J. Betz  Biophysical Journal 
MunJu Kim, Katarzyna A. Rejniak  Biophysical Journal 
Marc Jendrny, Thijs J. Aartsma, Jürgen Köhler  Biophysical Journal 
Volume 106, Issue 8, Pages (April 2014)
Volume 111, Issue 2, Pages (July 2016)
DNA Hairpins: Fuel for Autonomous DNA Devices
HyeongJun Kim, Jen Hsin, Yanxin Liu, Paul R. Selvin, Klaus Schulten 
Volume 106, Issue 6, Pages (March 2014)
Volume 87, Issue 2, Pages (August 2004)
Cytoskeleton: Titin as a scaffold and spring
Kirstin A. Walther, Jasna Brujić, Hongbin Li, Julio M. Fernández 
Direct Observation of Single MuB Polymers
Volume 96, Issue 2, Pages (January 2009)
Volume 74, Issue 1, Pages (January 1998)
Volume 113, Issue 10, Pages (November 2017)
Christopher Deufel, Michelle D. Wang  Biophysical Journal 
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size
Mechanics on Myocardium Deficient in the N2B Region of Titin: The Cardiac-Unique Spring Element Improves Efficiency of the Cardiac Cycle  Joshua Nedrud,
Mark C. Leake, David Wilson, Mathias Gautel, Robert M. Simmons 
Emergent Global Contractile Force in Cardiac Tissues
Naoto Yagi, Hiroyuki Iwamoto, Jun’ichi Wakayama, Katsuaki Inoue 
Volume 103, Issue 10, Pages (November 2012)
Nucleotide Effects on the Structure and Dynamics of Actin
Volume 103, Issue 2, Pages (July 2012)
Resveratrol Inhibits the Formation of Multiple-Layered β-Sheet Oligomers of the Human Islet Amyloid Polypeptide Segment 22–27  Ping Jiang, Weifeng Li,
Ca-Activation and Stretch-Activation in Insect Flight Muscle
Pek Ieong, Rommie E. Amaro, Wilfred W. Li  Biophysical Journal 
Samuel J. Goodchild, Logan C. Macdonald, David Fedida 
Volume 111, Issue 6, Pages (September 2016)
Structural Flexibility of CaV1. 2 and CaV2
Molecular Dynamics Simulations of Lignin Peroxidase in Solution
A Nebulin Ruler Does Not Dictate Thin Filament Lengths
Fredrik Elinder, Michael Madeja, Hugo Zeberg, Peter Århem 
In Vivo Ultrastructural Localization of the Desmoglein 3 Adhesive Interface to the Desmosome Mid-Line  Atsushi Shimizu, Akira Ishiko, Takayuki Ota, Hitoshi.
Open-State Models of a Potassium Channel
Volume 101, Issue 8, Pages (October 2011)
R. Stehle, M. Krüger, G. Pfitzer  Biophysical Journal 
Volume 112, Issue 10, Pages (May 2017)
Ave Minajeva, Michael Kulke, Julio M. Fernandez, Wolfgang A. Linke 
Two Kinases to Soften the Heart
Volume 104, Issue 9, Pages (May 2013)
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Lucy R. Forrest, Christopher L. Tang, Barry Honig  Biophysical Journal 
Mutational analysis of major, sequential IgE-binding epitopes in αs1-casein, a major cow's milk allergen  Renata R. Cocco, MD, Kirsi-Marjut Järvinen,
How Cells Tiptoe on Adhesive Surfaces before Sticking
Partially Assembled Nucleosome Structures at Atomic Detail
Volume 88, Issue 6, Pages (June 2005)
Volume 87, Issue 2, Pages (August 2004)
Volume 83, Issue 2, Pages (August 2002)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Vikram A. Kanda, Anthony Lewis, Xianghua Xu, Geoffrey W. Abbott 
Volume 107, Issue 9, Pages (November 2014)
Ricksen S. Winardhi, Qingnan Tang, Jin Chen, Mingxi Yao, Jie Yan 
A Distinct Contribution of the δ Subunit to Acetylcholine Receptor Channel Activation Revealed by Mutations of the M2 Segment  Jian Chen, Anthony Auerbach 
Hierarchical Extensibility in the PEVK Domain of Skeletal-Muscle Titin
Naoto Yagi, Hiroyuki Iwamoto, Jun’ichi Wakayama, Katsuaki Inoue 
Volume 85, Issue 6, Pages (December 2003)
Presentation transcript:

Molecular Dissection of N2B Cardiac Titin’s Extensibility Karoly Trombitás, Alexandra Freiburg, Thomas Centner, Siegfried Labeit, Henk Granzier  Biophysical Journal  Volume 77, Issue 6, Pages 3189-3196 (December 1999) DOI: 10.1016/S0006-3495(99)77149-3 Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 1 (A) Domain structure of I-band region of cardiac N2B titin (adapted from Labeit and Kolmerer, 1995) and location of binding sites of antibodies used in this work. (Red, Ig domains; white, fibronectin domains; yellow, PEVK segment; blue, unique sequence.) (B) Top: example of rabbit sarcomere labeled simultaneously with Un, Uc, and I20/22. Note that the unique sequence (Un-Uc) and the PEVK (Uc-I20/22) are both extended. Middle: rabbit sarcomere labeled with T12, Uc and MIR antibodies. Bottom: control rabbit sarcomere labeled with secondary antibody only. (Scale bare: 0.5μm.). (C) Extension of tandem Igs versus sarcomere length. See text for further details. (Proximal tandem Ig: T12-Un; distal tandem Ig: I20/22-MIR. Results are from five mouse cells and nine rabbit cells. Rabbit and mouse data were indistinguishable and, for clarity sake of the graph, they are shown with the same symbols. Curves represent exponential fits to all data.) Biophysical Journal 1999 77, 3189-3196DOI: (10.1016/S0006-3495(99)77149-3) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 2 Extensible behavior of PEVK segment. (A) Example of sarcomere from rabbit double labeled with Uc and I20/22. Note the two I-band epitopes with a slight separation between them. (Scale bare: 0.5μm.) (B) PEVK segment length (Uc-I20/22) versus sarcomere length. The PEVK segment extends in sarcomeres longer than ∼2.0μm and reaches a maximal extension of ∼80nm. (Red symbols, data from five mouse cells; black symbols, data from six rabbit cells. The curve represents the exponential fit to all data.) Biophysical Journal 1999 77, 3189-3196DOI: (10.1016/S0006-3495(99)77149-3) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 3 Extensible behavior of N2B unique sequence. (A) Examples of rabbit sarcomeres double labeled with Un and Uc. Note that the two epitopes in the middle and bottom sarcomeres are clearly separated, revealing the extensibility of the unique sequence. (Scale bare: 0.5μm.) (B) End-to-end length of unique sequence (Un-Uc) versus sarcomere length. The unique sequence extends in sarcomeres longer than ∼2.0μm and reaches an extension of ∼200nm at an SL of 3.3μm. (Red symbols, data from seven mouse cell; black symbols, data from eight rabbit cells. The curve represents the exponential fit to all data.) Biophysical Journal 1999 77, 3189-3196DOI: (10.1016/S0006-3495(99)77149-3) Copyright © 1999 The Biophysical Society Terms and Conditions

Figure 4 Comparison of extensible behavior of tandem Igs, unique sequence, and the PEVK segment. (Shown are the fitted curves of the data in Figs. 1–3). Tandem Ig segments contribute most to titin’s extensibility. The unique sequence contributes less and the PEVK segment contributes the least. Vertical broken line indicates the maximal sarcomere length that may be reached under physiological conditions. See text for details. Biophysical Journal 1999 77, 3189-3196DOI: (10.1016/S0006-3495(99)77149-3) Copyright © 1999 The Biophysical Society Terms and Conditions