Quantum Mechanics IB Physics.

Slides:



Advertisements
Similar presentations
Quantum Mechanics AP Physics B.
Advertisements

Chapter 38B - Quantum Physics
Wave-Particle Duality
Lecture Outline Chapter 30 Physics, 4th Edition James S. Walker
Any questions about the satellite assignment? Problems : Q3B.1, Q3B.2 and Q3B.5 due Wednesday If there are any errors on your printout circle them and.
Knight - Chapter 28 (Grasshopper Book) Quantum Physics.
Photoelectric Effect (Quantum Theory of Light) Einstein (1905) created the quantum theory of light, which states that electromagnetic radiation traveled.
Chapter 29 - Particles and Waves. 1.Who won the Nobel prize for his explanation of the photoelectric effect? A.Planck B.Bohr C.De Broglie D.Einstein 2.The.
Blackbody Radiation & Planck’s Hypothesis
About these slides These slides are used as part of my lessons and shouldn’t be considered comprehensive There’s no excuse for not turning up to lessons!
6. Atomic and Nuclear Physics Chapter 6.4 Interactions of matter with energy.
Chapter 27 Quantum Theory
Blackbody Radiation & Planck’s Hypothesis
MAX PLANCK PHOTOELECTRIC EFFECT © John Parkinson.
L 33 Modern Physics [1] Introduction- quantum physics Particles of light  PHOTONS The photoelectric effect –Photocells & intrusion detection devices The.
11.1 – THE PHOTOELECTRIC EFFECT Setting the stage for modern physics…
Classical ConceptsEquations Newton’s Law Kinetic Energy Momentum Momentum and Energy Speed of light Velocity of a wave Angular Frequency Einstein’s Mass-Energy.
NCEA Level 3 Physics  The Photoelectric effect - Experiment - Quantum theory & work function - Wave particle duality  Atomic spectra - Hydrogen line.
AP Phys 12 – Class Starter Welcome Back! 1.Form a group of 2 or 3, no more! 2.Collect a whiteboard and handout from the front 3.Let’s review Nuclear Chemistry.
G. Energy of a photon You should be able to: describe the particulate nature (photon model) of electromagnetic radiation state that a photon is a quantum.
Importance of photoelectric effect:
Modern Physics Wave Particle Duality of Energy and Matter Is light a particle or a wave? We have see that light acts like a wave from polarization, diffraction,
Quantum Mechanics Photoelectric Effect & The Ultraviolet Catastrophe.
More About Photoelectricity Quantum Physics Lesson 2.
PHYS:1200 FINAL EXAM 1 FINAL EXAM: Wednesday December 17, 12:30 P - 2:30 P in LR-1 VAN FE covers Lectures 23 – 36 The study guide, formulas, and practice.
L 33 Modern Physics [1] Introduction- quantum physics Particles of light  PHOTONS The photoelectric effect –Photocells & intrusion detection devices The.
WAVE +PARTICLE =WAVICLES. The Phenomenon explaining particle nature of light.
Quantum Mechanics. Planck’s Law A blackbody is a hypothetical body which absorbs radiation perfectly for every wave length. The radiation law of Rayleigh-Jeans.
As an object gets hot, it gives Off energy in the form of Electromagnetic radiation.
Blackbody Radiation: The light from a blackbody is light that comes solely from the object itself rather than being reflected from some other source. A.
Quantum Theory FYI 1/3 of exams graded, and average is about 71%. Reading: Ch No HW this week !
The Wave – Particle Duality OR. Light Waves Until about 1900, the classical wave theory of light described most observed phenomenon. Light waves: Characterized.
Chapter 27- Atomic/Quantum Physics
Wave Particle Duality Photoelectric Effect. Waves and Particles So far this year, we have treated waves and particles as if they are separate entities.
Quantum Theory & the History of Light
Questions From Reading Activity? Assessment Statements  Topic 13.1, Quantum Physics: The Quantum Nature of Radiation Describe the photoelectric.
Origin of Quantum Theory
6.1 The Dual Nature of Light Chemistry Ms. Pollock
LIGHT and MATTER Chapters 11 & 12. Originally performed by Young (1801) to demonstrate the wave-nature of light. Has now been done with electrons, neutrons,
Graphical Analysis and Applications of Photoelectric Effect
PHOTOELECTRIC EFFECT Z.H.MANE. Photoelectric Effect Metal Foil.
Photon-matter interactions Contents: Photoelectric effect Compton scattering Pair production.
Chemistry I Chapter 4 Arrangement of Electrons. Electromagnetic Radiation Energy that exhibits wavelike behavior and travels through space Moves at the.
Quantum Theory Chapter 27
Chapter 38B - Quantum Physics
“My Nobel Prize” by Albert Einstein
Quantum Theory Chapter 27.
Finish up the photoelectric effect
Chapter 6 Electronic Structure of Atoms
Origin of Quantum Theory
Speed of light (c) Celeritas = latin for swiftness
L 33 Atomic and Nuclear Physics-1
General Physics (PHY 2140) Lecture 28 Modern Physics Quantum Physics
L 33 Modern Physics [1] Introduction- quantum physics
B. Tech Physics PHX(101) By Dr. Arvind Kumar Physics Department
Atomic Physics & Quantum Effects
Blackbody Radiation All bodies at a temperature T emit and absorb thermal electromagnetic radiation Blackbody radiation In thermal equilibrium, the power.
PHOTOELECTRIC EFFECT hhhhh 12/4/2018.
THE PHOTOELECTRIC EFFECT
Chapter 27 Early Quantum Theory
Interaction of Electromagnetic Radiation with Matter
Light and Energy Electromagnetic Radiation is a form of energy that is created through the interaction of electrical and magnetic fields. It displays wave-like.
6.1.1 Photons, Photoelectric Effect, and Particle Nature of Light
Physics and the Quantum Model
More About Photoelectricity
The Electronic Structure of Atoms
Chapter 29 Photoelectric Effect
Key Areas covered Photoelectric effect as evidence for the particulate nature of light Photons of sufficient energy can eject electrons from the surface.
Photoelectric Effect And Quantum Mechanics.
“Newton, forgive me...”, Albert Einstein
Presentation transcript:

Quantum Mechanics IB Physics

Quantum? Quantum mechanics is the study of processes which occur at the atomic scale. The word "quantum" is derived From Latin to mean BUNDLE. Therefore, we are studying the motion of objects that come in small bundles called quanta. These tiny bundles that we are referring to are electrons traveling around the nucleus.

“Newton, forgive me..”, Albert Einstein At the atomic scale Newtonian Mechanics cannot seem to describe the motion of particles. An electron trajectory between two points for example IS NOT a perfect parabolic trajectory as Newton's Laws predicts. Where Newton's Laws end Quantum Mechanics takes over.....IN A BIG WAY! One of the most popular concepts concerning Quantum Mechanics is called , “The Photoelectric Effect”. In 1905, Albert Einstein published this theory for which he won the Nobel Prize in 1921.

What is the Photoelectric Effect? In very basic terms, it is when electrons are released from a certain type of metal upon receiving enough energy from incident light. So basically, light comes down and strikes the metal. If the energy of the light wave is sufficient, the electron will then shoot out of the metal with some velocity and kinetic energy.

The Electron-Volt = ENERGY Before we begin to discuss the photoelectric effect, we must introduce a new type of unit. Recall: This is a very useful unit as it shortens our calculations and allows us to stray away from using exponents.

The Photoelectric Effect "When light strikes a material, electrons are emitted. The radiant energy supplies the work necessary to free the electrons from the surface."

Photoelectric Fact #1 The LIGHT ENERGY (E) is in the form of quanta called PHOTONS. Since light is an electromagnetic wave it has an oscillating electric field. The more intense the light the more the field oscillates. In other words, its frequency is greater.

Light Review

More on Fact #1 h hc 6.63x10-34 Js 1.99x10-25 Jm 4.14x10-15 eVs Make sure you USE the correct constant! h hc 6.63x10-34 Js 1.99x10-25 Jm 4.14x10-15 eVs 1.24x103 eVnm Planck’s Constant is the SLOPE of an Energy vs. Frequency graph!

Photoelectric Fact #2 The frequency of radiation must be above a certain value before the energy is enough. This minimum frequency required by the source of electromagnetic radiation to just liberate electrons from the metal is known as threshold frequency, f0. The threshold frequency is the X-intercept of the Energy vs. Frequency graph!

Photoelectric Fact #3 Work function, f, is defined as the least energy that must be supplied to remove a free electron from the surface of the metal, against the attractive forces of surrounding positive ions. Shown here is a PHOTOCELL. When incident light of appropriate frequency strikes the metal (cathode), the light supplies energy to the electron. The energy need to remove the electron from the surface is the WORK! Not ALL of the energy goes into work! As you can see the electron then MOVES across the GAP to the anode with a certain speed and kinetic energy.

Photoelectric Fact #4 The MAXIMUM KINETIC ENERGY is the energy difference between the MINIMUM AMOUNT of energy needed (ie. the work function) and the LIGHT ENERGY of the incident photon. THE BOTTOM LINE: Energy Conservation must still hold true! The energy NOT used to do work goes into KINETIC ENERGY as the electron LEAVES the surface. Light Energy, E WORK done to remove the electron

Putting it all together KINETIC ENERGY can be plotted on the y axis and FREQUENCY on the x-axis. The WORK FUNCTION is the y – intercept as the THRESHOLD FREQUNECY is the x intercept. PLANCK‘S CONSTANT is the slope of the graph.

Can we use this idea in a circuit? We can then use this photoelectric effect idea to create a circuit using incident light. Of course, we now realize that the frequency of light must be of a minimum frequency for this work. Notice the + and – on the photocell itself. We recognize this as being a POTENTIAL DIFFERENCE or Voltage. This difference in voltage is represented as a GAP that the electron has to jump so that the circuit works What is the GAP or POTENTIAL DIFFERENCE is too large?

Photoelectric Fact #5 - Stopping Potential If the voltage is TOO LARGE the electrons WILL NOT have enough energy to jump the gap. We call this VOLTAGE point the STOPPING POTENTIAL. If the voltage exceeds this value, no photons will be emitted no matter how intense. Therefore it appears that the voltage has all the control over whether the photon will be emitted and thus has kinetic energy.

Wave-Particle Duality The results of the photoelectric effect allowed us to look at light completely different. First we have Thomas Young’s Diffraction experiment proving that light behaved as a WAVE due to constructive and destructive interference. Then we have Max Planck who allowed Einstein to build his photoelectric effect idea around the concept that light is composed of PARTICLES called quanta.

This led to new questions…. If light is a WAVE and is ALSO a particle, does that mean ALL MATTER behave as waves? That was the question that Louis de Broglie pondered. He used Einstein's famous equation to answer this question.

YOU are a matter WAVE! Basically all matter could be said to have a momentum as it moves. The momentum however is inversely proportional to the wavelength. So since your momentum would be large normally, your wavelength would be too small to measure for any practical purposes. An electron, however, due to it’s mass, would have a very small momentum relative to a person and thus a large enough wavelength to measure thus producing measurable results. This led us to start using the Electron Microscopes rather than traditional Light microscopes.

The electron microscope After the specimen is prepped. It is blasted by a bean of electrons. As the incident electrons strike the surface, electrons are released from the surface of the specimen. The deBroglie wavelength of these released electrons vary in wavelength which can then be converted to a signal by which a 3D picture can then be created based on the signals captured by the detector.