Kernel Author: Makoto Asai.

Slides:



Advertisements
Similar presentations
The Geant4 Kernel: Status and Recent Developments John Apostolakis, Gabriele Cosmo – CERN / PH Makoto Asai – SLAC On behalf the Geant4 collaboration April.
Advertisements

IEEE Nuclear Science Symposium and Medical Imaging Conference Short Course The Geant4 Simulation Toolkit Sunanda Banerjee (Saha Inst. Nucl. Phys., Kolkata,
Geant4 v9.2p02 Primary Particle Makoto Asai (SLAC) Geant4 Tutorial Course.
Primary particle generation Makoto Asai (SLAC) Geant4 Users CERN Nov. 12 th, 2002.
Makoto Asai (SLAC) Geant4 Users SLAC Feb. 18 th, 2002 Getting Started.
Primary particle generation Makoto Asai (SLAC) Geant4 Users SLAC Feb. 18 th, 2002.
Makoto Asai (SLAC) Geant4 Users CERN Nov. 12 th, 2002 Detector Sensitivity.
Geant4 v9.4 Primary Particle Makoto Asai (SLAC) Geant4 Tutorial Course.
Makoto Asai (SLAC) Geant4 Users CERN Nov. 11 th, 2002 Getting Started.
14 User Documents and Examples I SLAC Geant4 Tutorial 3 November 2009 Dennis Wright Geant4 V9.2.p02.
Makoto Asai (SLAC) Geant4 Users SLAC Feb. 18 th, 2002 Getting Started.
Geant4 v9.3p01 Primary Particle Makoto Asai (SLAC) Geant4 Tutorial Course.
HCAL Digitization Rick Wilkinson. Program Flow CaloHitResponse CaloSamples (analog signal) HcalElectronicsSim HBHEDataFrame (or HF, or HO) SimHits DetId= ,
Makoto Asai (SLAC) Geant4 Users SLAC Feb. 20th, 2002 Stack management, Digitization and Pile-up.
S. Guatelli, M.G Pia, INFN Genova S. Guatelli ( CERN, INFN Genova ) CERN, 13 November 2002 Users Workshop Where to put analysis in Geant4 Applications.
Makoto Asai (SLAC) Geant4 Tutorial Course
Makoto Asai (SLAC) Geant4 Users CERN Nov. 13th, 2002 Stack management, Digitization and Pile-up.
Primary Particle Makoto Asai (SLAC) Geant4 Tutorial Course Geant4 v8.2p01.
Detector Description - Materials
Detector Description: Materials
17-19 Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan 2007 Geant4 Japan.
Materials 1 Images: Isotopic composition Molecular composition Density Pressure State Temperature.
User Documents and Examples I Sébastien Incerti Slides thanks to Dennis Wrigth, SLAC.
1 Primary particles Geant4 User's Tutorial CERN, February 2010 Talk from previous tutorial by Giovanni Santin Ecole Geant4, Annecy 2008.
Geant4 Training 2003 Basic structure of the Geant4 Simulation Toolkit The full set of lecture notes of this Geant4 Course is available.
Maria Grazia Pia Detector Response Acknowledgements: A. Lechner, J. Apostolakis, M. Asai, G. Cosmo, A. Howard.
Basic Structure of the Geant4 Simulation Toolkit
Primary particle Giovanni Santin ESA / ESTEC and RheaTech Ltd On behalf of the Geant4 collaboration Ecole Geant4 Annecy, and Nov 2008 With.
Geant4 internal Classes and Objects Gunter Folger / CERN Geant4 course, Annecy 2008 User Action & Information Classes.
New G4beamline pillbox improvements K.B.Beard 4/26/2011.
17-19 Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan 2007 Geant4 Collaboration.
Alex Howard - Event Biasing Geant4 Users - Lisbon Event biasing and Variance Reduction - Geometrical Alex Howard, CERN Geant4 Users Workshop, Lisbon.
Geant4 internal Classes and Objects Geant4 Users’ Tutorial February 2010 Gunter Folger / CERN User Action & Information Classes.
1 Calorimeter in G4MICE Berkeley 10 Feb 2005 Rikard Sandström Geneva University.
Basics of Primary Particle Generation and Tracking Makoto Asai (SLAC) Geant4 Tutorial CERN May 25-27, 2005 May 2005, Geant4 v7.0p01.
Run and Event G4Run and G4RunManager In Geant4, the Run is the largest unit of simulation and it consist of a series of events Within a Run, the detector.
The metric system - SI The system of measurement in science Lecture Notes.
CLHEP Components Geant4 and CLHEP Geant4 makes a rather substantial use of CLHEP components –System of units –Vector classes and matrices G4ThreeVector(typedef.
Makoto Asai (SLAC) Getting Started MGP: added class diagram of basic user application.
Geant4 internal Classes and Objects Gunter Folger / CERN MC-PAD, DESY/Hamburg January 2010 User Action & Information Classes.
1 Performance of a Magnetised Scintillating Detector for a Neutrino Factory Scoping Study Meeting U.C. Irvine Monday 21 st August 2006 M. Ellis & A. Bross.
Detector Description - Materials
1 Exercises 0 Go inside the “hadrontherapy” directory: cd hadrontherapy Copy the Hadrontherapy example to your home folder: cp –r $G4INSTALL/examples/advanced/hadrontherapy.
Maria Grazia Pia Retrieving information from kernel Acknowledgements: A. Lechner, J. Apostolakis, M. Asai, G. Cosmo, A. Howard.
ENERGY AND MOTION Unit 1-section 1 Science- a process that uses observation and investigation to gain knowledge about events in nature.
Interaction with the Geant4 kernel
1.3 Measurement Scientists work with very large or very small numbers
Makoto Asai (SLAC) Geant4 Tutorial Course
Interaction with the Geant4 kernel
User Documents and Examples I
Fundamental and Derived Measurements.
Geant4:User Actions and Analysis
Geant4 introduction 2008/03/18 Nobu Katayama KEK
Primary Particle Generation
Makoto Asai (SLAC) Geant4 Users CERN Nov. 11th, 2002
Primary Particle Generation
Read-out and detector response
Detector sensitivity Makoto Asai (SLAC Computing Services)
Other GEANT4 capabilities
Makoto Asai (SLAC) Geant4 Tutorial Course
Read-out and detector response
Detector Description - Materials
GAMOS tutorial Plug-in’s Exercises
Marc Verderi GEANT4 collaboration meeting 01/10/2002
Primary particle Makoto Asai (SLAC Computing Services)
Standards of Measurement
Geant4: Detector description module
The Geant4 Hadrontherapy Advanced Example
Physics event timing Use Pythia to generate hadronic decays at 125 GeV
Simulation in Experiments searching for rare events
Presentation transcript:

Kernel Author: Makoto Asai

Run As an analogy of the real experiment, a run of Geant4 starts with “Beam On”. Within a run, the user cannot change detector geometry settings of physics processes ---> detector is inaccessible during a run Conceptually, a run is a collection of events which share the same detector conditions.

Event At beginning of processing, an event contains primary particles. These primaries are pushed into a stack. When the stack becomes empty, processing of an event is over. G4Event class represents an event. It has following objects at the end of its processing. List of primary vertexes and particles Trajectory collection (optional) Hits collections Digits collections (optional)

Track Track is a snapshot of a particle. Step is a “delta” information to a track. Track is not a collection of steps. Track is deleted when it goes out of the world volume it disappears (e.g. decay) it goes down to zero kinetic energy and no “at rest” additional process is required the user decides to kill it

Track A track is made of three layers of class objects. G4Track Position, volume, track length, global ToF ID of itself and mother track G4DynamicParticle Momentum, energy, local time, polarization Pre-fixed decay channel G4ParticleDefinition Shared by all G4DynamicParticle of same type Mass, lifetime, charge, other physical quantities Decay table

Step Step has two points and also “delta” information of a particle (energy loss on the step, time-of-flight spent by the step, etc.). Each point knows the volume. In case a step is limited by a volume boundary, the end point physically stands on the boundary, and it logically belongs to the next volume. End of step point Step Begin of step point Boundary

Trajectory Trajectory is a record of a track history. It stores some information of all steps done by the track as objects of G4TrajectoryPoint class. It is advised not to store trajectories for secondary particles generated in a shower because of the memory consumption. The user can create his own trajectory class deriving from G4VTrajectory and G4VTrajectoryPoint base classes for storing any additional information useful to the simulation.

Gabriele Cosmo, CERN/IT System of Units Gabriele Cosmo, CERN/IT

Unit system Geant4 has no default unit. To give a number, unit must be “multiplied” to the number. for example : G4double width = 12.5*m; G4double density = 2.7*g/cm3; If no unit is specified, the internal G4 unit will be used, but this is discouraged ! Almost all commonly used units are available. The user can define new units. Refer to CLHEP: SystemOfUnits.h Divide a variable by a unit you want to get. G4cout << dE / MeV << “ (MeV)” << G4endl;

HEP system of Units System of units are defined in CLHEP, based on: millimetre (mm), nanosecond (ns), MeV (MeV), positron charge (eplus) degree Kelvin (kelvin), the amount of substance (mole), luminous intensity (candela), radian (radian), steradian (steradian) All other units are computed from the basic ones. In output, Geant4 can choose the most appropriate unit to use. Just specify the category for the data (Length, Time, Energy, etc…): G4cout << G4BestUnit(StepSize, “Length”); StepSize will be printed in km, m, mm or … fermi, depending on its value

Defining new units New units can be defined directly as constants, or (suggested way) via G4UnitDefinition. G4UnitDefinition ( name, symbol, category, value ) Example (mass thickness): G4UnitDefinition (“grammpercm2”, “g/cm2”, “MassThickness”, g/cm2); The new category “MassThickness” will be registered in the kernel in G4UnitsTable To print the list of units: From the code G4UnitDefinition::PrintUnitsTable(); At run-time, as UI command: Idle> /units/list