Stephan Lammel, Daniela I. Ion, Jochen Roeper, Robert C. Malenka 

Slides:



Advertisements
Similar presentations
Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Advertisements

Volume 49, Issue 4, Pages (February 2006)
Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association  Junuk Lee, Joel Finkelstein,
Daniel Saal, Yan Dong, Antonello Bonci, Robert C Malenka  Neuron 
Volume 78, Issue 6, Pages (June 2013)
Volume 66, Issue 6, Pages (June 2010)
Guangying K. Wu, Pingyang Li, Huizhong W. Tao, Li I. Zhang  Neuron 
Volume 79, Issue 3, Pages (August 2013)
Volume 80, Issue 2, Pages (October 2013)
Functional Convergence at the Retinogeniculate Synapse
Volume 87, Issue 5, Pages (September 2015)
Endocannabinoids Control the Induction of Cerebellar LTD
Volume 59, Issue 3, Pages (August 2008)
Activation of VTA GABA Neurons Disrupts Reward Consumption
Volume 73, Issue 5, Pages (March 2012)
The Generation of Direction Selectivity in the Auditory System
Martin O'Neill, Wolfram Schultz  Neuron 
Linking Cholinergic Interneurons, Synaptic Plasticity, and Behavior during the Extinction of a Cocaine-Context Association  Junuk Lee, Joel Finkelstein,
Volume 80, Issue 4, Pages (November 2013)
Volume 82, Issue 6, Pages (June 2014)
Volume 88, Issue 2, Pages (October 2015)
Ben Scholl, Xiang Gao, Michael Wehr  Neuron 
Volume 85, Issue 2, Pages (January 2015)
LTP Requires a Unique Postsynaptic SNARE Fusion Machinery
Volume 86, Issue 2, Pages (April 2015)
Volume 27, Issue 16, Pages e3 (August 2017)
Volume 86, Issue 5, Pages (June 2015)
Odor Processing by Adult-Born Neurons
Volume 77, Issue 5, Pages (March 2013)
Volume 83, Issue 6, Pages (September 2014)
Volume 51, Issue 6, Pages (September 2006)
Volume 8, Issue 4, Pages (August 2014)
Leslie R. Whitaker, Mickael Degoulet, Hitoshi Morikawa  Neuron 
Dopaminergic Modulation of Axon Initial Segment Calcium Channels Regulates Action Potential Initiation  Kevin J. Bender, Christopher P. Ford, Laurence.
Volume 23, Issue 9, Pages (May 2018)
Volume 88, Issue 5, Pages (December 2015)
Hyoung F. Kim, Hidetoshi Amita, Okihide Hikosaka  Neuron 
Talia Konkle, Aude Oliva  Neuron  Volume 74, Issue 6, Pages (June 2012)
The Retromer Supports AMPA Receptor Trafficking During LTP
Volume 94, Issue 2, Pages e4 (April 2017)
Volume 97, Issue 2, Pages e4 (January 2018)
Volume 59, Issue 2, Pages (July 2008)
Prefrontal and Auditory Input to Intercalated Neurons of the Amygdala
Volume 57, Issue 5, Pages (March 2008)
Differential Expression of Posttetanic Potentiation and Retrograde Signaling Mediate Target-Dependent Short-Term Synaptic Plasticity  Michael Beierlein,
μ-Opioid Receptor and CREB Activation Are Required for Nicotine Reward
Volume 74, Issue 2, Pages (April 2012)
Volume 90, Issue 3, Pages (May 2016)
Volume 60, Issue 4, Pages (November 2008)
Corey Baimel, Benjamin K. Lau, Min Qiao, Stephanie L. Borgland 
Dopamine: Burning the Candle at Both Ends
Xiangying Meng, Joseph P.Y. Kao, Hey-Kyoung Lee, Patrick O. Kanold 
Volume 57, Issue 2, Pages (January 2008)
A Novel Form of Local Plasticity in Tuft Dendrites of Neocortical Somatosensory Layer 5 Pyramidal Neurons  Maya Sandler, Yoav Shulman, Jackie Schiller 
Volume 91, Issue 6, Pages (September 2016)
Peter H. Rudebeck, Andrew R. Mitz, Ravi V. Chacko, Elisabeth A. Murray 
Volume 62, Issue 2, Pages (April 2009)
Volume 74, Issue 3, Pages (May 2012)
Bo Li, Ran-Sook Woo, Lin Mei, Roberto Malinow  Neuron 
Volume 45, Issue 5, Pages (March 2005)
Dopamine Neurons Control Striatal Cholinergic Neurons via Regionally Heterogeneous Dopamine and Glutamate Signaling  Nao Chuhma, Susana Mingote, Holly.
Volume 68, Issue 4, Pages (November 2010)
Activation of VTA GABA Neurons Disrupts Reward Consumption
PKC Signaling Mediates Global Enhancement of Excitatory Synaptogenesis in Neurons Triggered by Local Contact with Astrocytes  Hiroshi Hama, Chikako Hara,
Alexandre Mathy, Beverley A. Clark, Michael Häusser  Neuron 
Multisensory Integration in the Mouse Striatum
Sami Boudkkazi, Aline Brechet, Jochen Schwenk, Bernd Fakler  Neuron 
Volume 19, Issue 12, Pages (June 2017)
Volume 66, Issue 6, Pages (June 2010)
Postsynaptic Complexin Controls AMPA Receptor Exocytosis during LTP
Presentation transcript:

Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli  Stephan Lammel, Daniela I. Ion, Jochen Roeper, Robert C. Malenka  Neuron  Volume 70, Issue 5, Pages 855-862 (June 2011) DOI: 10.1016/j.neuron.2011.03.025 Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 1 Retrograde Labeling of Midbrain DA Neurons (A) Injection sites (arrows) in green Nissl (488 nm)-counterstained sections (100 μm) showing typical locations of Retrobeads (546 nm, yellow). From top to bottom: mPFC (bregma +1.70 mm), NAc medial shell (bregma +1.10 mm), NAc lateral shell (bregma +0.74 mm), dorsolateral striatum (bregma +0.98 mm). Scale bars = 500 μm. (B) Confocal images showing the anatomical distribution of retogradely transported Retrobeads (white) in the posterior VTA and SN after TH-immunohistochemistry (blue) at low magnification (10 ×, left panels) and high magnification (63 ×, right panels). Note that cells projecting to the mPFC are located in medial aspects of the posterior VTA and cells projecting to the NAc medial shell are located in the ventromedial areas of the posterior VTA. In contrast, neurons projecting to the NAc lateral shell are located in the dorsolateral region of the posterior VTA and cells projecting to the dorsolateral striatum are completely located in the posterior SN. Scale bars = 200 μm (left panel) and 20 μm (right panel). (C) Pie charts showing the relative number of retrogradely labeled TH-immunopositive and TH-immunonegative cells that were located in the posterior VTA or posterior SN (bregma −3.80 to −3.28 mm). Mesocortical, n = 49 cells; mesolimbic medial shell, n = 101 cells; mesolimbic lateral shell, n = 107 cells; nigrostriatal, n = 140 cells). (D) Representative current traces in response to a voltage step from −40 to −120 mV. Measurements of IRK + leak currents and Ih are indicated in the mesolimbic lateral shell trace. (E) Magnitude of Ih for each cell population. Numbers of cells are indicated (∗p < 0.05). (F) Magnitude of IRK + leak currents for each cell population with numbers of cells indicated (∗p < 0.05). Bar graphs in E and F represent means ± SEM. Neuron 2011 70, 855-862DOI: (10.1016/j.neuron.2011.03.025) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 2 Excitatory Synapses on DA Neuron Subpopulations Have Distinct Properties (A) Sample AMPAR- and NMDAR EPSCs at +40 mV from different subpopulations of DA neurons. (B) AMPAR/NMDAR ratios at +40 mV (left panel) and at −70 mV/+40 mV (right panel) in the different DA neuron subpopulations. Numbers of cells are indicated (∗p < 0.05). Bar graphs represent means ± SEM. Neuron 2011 70, 855-862DOI: (10.1016/j.neuron.2011.03.025) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 3 Cocaine Administration Increases AMPAR/NMDAR Ratios Only in DA Cells Projecting to NAc (A–D) Sample AMPAR and NMDAR EPSCs (left panels) and magnitude of AMPAR/NMDAR ratios (right panels) in different DA neuron subpopulations in animals that received saline or cocaine injections 24 hr prior to slice preparation. Numbers of cells are indicated (∗p < 0.05). Note that DA cells projecting to NAc lateral shell (A) and NAc medial shell (D) showed large increases in AMPAR/NMDAR ratios but nigrostriatal cells (B) and cells projecting to mPFC (C) did not. The control cells in C are the same as those shown in Figure 2B. (E) Sample AMPAR and NMDAR EPSCs recorded from DA cells projecting to NAc medial shell 10 or 21 days after cocaine administration. (F) Magnitude of AMPAR/NMDAR ratios at these time points compared to saline injected animals. Numbers of cells are indicated (∗p < 0.05). Bar graphs in A–F represent means ± SEM. Neuron 2011 70, 855-862DOI: (10.1016/j.neuron.2011.03.025) Copyright © 2011 Elsevier Inc. Terms and Conditions

Figure 4 An Aversive Stimulus Increases AMPAR/NMDAR Ratio in DA Cells Projecting to the mPFC (A–D) Sample AMPAR and NMDAR EPSCs (left panels) and magnitude of AMPAR/NMDAR ratios (right panels) in different DA neuron subpopulations in animals that received hindpaw formalin injections 24 hr prior to slice preparation. Numbers of cells are indicated (∗p < 0.05). Note that DA cells projecting to the mPFC (A) and NAc lateral shell (C) showed increases in AMPAR/NMDAR ratios but nigrostriatal cells (D) and cells projecting to NAc medial shell (B) did not. The control cells in these panels are the same as those shown in Figure 2B. (E) Summary of some of the basal properties of the DA cell subpopulations and the modulation of their excitatory synapses by rewarding and aversive stimuli. Note that DA neurons projecting to the NAc lateral shell can be found in the anterior and posterior VTA (yellow dots) while DA neurons projecting to the mPFC and NAc medial shell are mainly located in the posterior VTA (red and green dots). Bar graphs in (A)–(D) represent means ± SEM. Neuron 2011 70, 855-862DOI: (10.1016/j.neuron.2011.03.025) Copyright © 2011 Elsevier Inc. Terms and Conditions