Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms 2.Flushes 3.Hellmuth vs. Farha 4.Worst possible beat 5.Jackpot.

Slides:



Advertisements
Similar presentations
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Wants.
Advertisements

Discrete Probability Rosen 5.1.
Combinatorics & Probability Section 3.4. Which Counting Technique? If the problem involves more than one category, use the Fundamental Principle of Counting.
1 Combination Symbols A supplement to Greenleafs QR Text Compiled by Samuel Marateck ©2009.
Chris Morgan, MATH G160 January 30, 2012 Lecture 9 Chapter 4.1: Combinations 1.
The basics for simulations
An Extra Point Quiz. Are You Smarter than a Pre-Calc Student is a game in which the first 10 questions the class is playing the game together to earn.
Counting. Counting in Algorithms How many comparisons are needed to sort n numbers? How many steps to compute the GCD of two numbers ? How many steps.
Copyright © 2002 by Radhika Nagpal and Charles E. Leiserson. All rights reserved. October 30, L9-2.1 Mathematics for Computer Science MIT 6.042J/18.062J.
Probability and Casino Games
Business and Economics 6th Edition
1 Combinations & Counting II Samuel Marateck © 2009.
5-1 Chapter 5 Theory & Problems of Probability & Statistics Murray R. Spiegel Sampling Theory.
5.3 Permutations and Combinations
Why Do You Want To Work For Us?
Discrete Mathematics Math 6A Homework 5 Solution.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Mathematical Induction (cont.)
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
Bell Schedules Club Time is available from 8:05-8:20  1 st 8:20 – 9:15  2 nd 9:20 – 10:10  3 rd 10:15 – 11:05  4 th 11:10 – 12:50 A(11:10)
Index Student Activity 1: Questions to familiarise students with the
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Savage/Tyler, Kaplan/Gazes 2.P(flop a full house) 3.Bernoulli random.
Chapter 8 Counting Principles: Further Probability Topics Section 8.3 Probability Applications of Counting Principles.
Probability – Page 1CSCI 1900 – Discrete Structures CSCI 1900 Discrete Structures Probability Reading: Kolman, Section 3.4.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review of random walks. 2.Ballot theorem. 3.P( avoiding zero )
1 Section 5.1 Discrete Probability. 2 LaPlace’s definition of probability Number of successful outcomes divided by the number of possible outcomes This.
Intro to Probability & Games
1 The game of poker You are given 5 cards (this is 5-card stud poker) The goal is to obtain the best hand you can The possible poker hands are (in increasing.
Probability – Models for random phenomena
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Hand in hw4. 2.Review list 3.Tournament 4.Sample problems * Final.
Poker Solutions.
Counting. Techniques for counting Rule 1 Suppose we carry out have a sets A 1, A 2, A 3, … and that any pair are mutually exclusive (i.e. A 1  A 2 =
3.8 Counting Techniques: Combinations. If you are dealt a hand in poker (5 cards), does it matter in which order the cards are dealt to you? A  K  J.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Thur 3/8/12: 0.HAND IN HW3 again! 1.E(X+Y) example corrected. 2.Random.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 0. Collect hw2, return hw1, give out hw3. 1.Project A competition.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterm. 2.Review of Bernoulli and binomial random variables. 3.Geometric.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.E(cards til 2 nd king). 2.Negative binomial. 3.Rainbow flops examples,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Collect Hw4. 2.Review list. 3.Answers to hw4. 4.Project B tournament.
Counting Subsets of a Set: Combinations Lecture 31 Section 6.4 Wed, Mar 21, 2007.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day, Tue 3/13/12: 1.Collect Hw WSOP main event. 3.Review list.
Homework Homework due now. Reading: relations
Expected Value. Expected Value - Definition The mean (average) of a random variable.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.hw, terms, etc. 2.WSOP example 3. permutations, and combinations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Addiction 2.Syllabus, etc. 3. Wasicka/Gold/Binger Example 4.Meaning.
 m C r =m!/r!(m-r)!  Property: m C r = m C (m-r)  Example: ◦ If you have 10 pens, all in different colors, and you want to bring two of them to class,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1. Review list 2.Bayes’ Rule example 3.CLT example 4.Other examples.
Use the Counting Rules to compute Probabilities. 2 of these and 4 of those A classic type of problem You have various subgroups. When you pick 6, what.
Some other set notation We will use the notation to mean that e is an element of A. We will use the notation to mean that e is not an element of A.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratios revisited. 2.Gold/Hellmuth. 3.Deal making. 4.Variance.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Tournaments 2.Review list 3.Random walk and other examples 4.Evaluations.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.PDFs and CDFs, for Random walks, ch 7.6. Reflection principle,
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Expected value. 2.Heads up with AA. 3.Heads up with Gus vs.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Review List 2.Review of Discrete variables 3.Nguyen / Szenkuti.
Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Odds ratio example again. 2.Random variables. 3.cdf, pmf, and density,
Texas Holdem A Poker Variant vs. Flop TurnRiver. How to Play Everyone is dealt 2 cards face down (Hole Cards) 5 Community Cards Best 5-Card Hand Wins.
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Basic Counting Lecture 9: Nov 5, 6.
Stat 35b: Introduction to Probability with Applications to Poker
Term Project: Poker Game
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Stat 35b: Introduction to Probability with Applications to Poker
Presentation transcript:

Stat 35b: Introduction to Probability with Applications to Poker Outline for the day: 1.Midterms 2.Flushes 3.Hellmuth vs. Farha 4.Worst possible beat 5.Jackpot hands. 6.Random Walks. * Computer Project B will be due on Monday, Nov 30, at 8:00pm. * No class Thursday, Dec 3. Last class is Dec 1. * Final is Thursday, Dec 10, 3-6pm, in class. * Open note. * Bring a calculator and a pen or pencil. * about multiple choice open-answers + an extra-credit with 2 open-answer parts. u u

2. Flushes. a) Given that both of your hole cards are the same suit, what is the probability that you will eventually make a flush? (Note that technically this includes the possibility that the 5 board cards are all the same suit, even if this is not the same suit as your two cards!) P(exactly 3 of your suit or exactly 4 of your suit or 5 of your suit or 5 of other suit) = [choose(11,3)*choose(39,2) + choose(11,4)*39 + choose(11,5) + 3*choose(13,5)] choose(50,5) ~ 6.58%. b) Given that your hole cards are different suits, what is P(flush)? = P(4 of suit A or 5 of suit A or 4 of suit B or 5 of suit B or 5 of suit C or 5 of suit D) = = [C(12,4)*38 + C(12,5) + C(12,4)*38 + C(12,5) + C(13,5) + C(13,5)] choose(50,5) ~ 1.97%. 3. Hellmuth vs. Farha.

4. The Worst Possible Beat. You have pocket aces, and your opponent has 6 2. The first two cards of the flop are revealed, and they are both aces! At this point, what is your opponents probability of winning the hand? 6 cards out. 46 cards left in the deck. The last 3 board cards must come: 3 4 5, not nec. in that order. P(opponent wins) = 1 / choose(46,3) = , or 1 in 15,180.

5. Jackpot hands The definition of a jackpot hand is a hand that meets the following 2 conditions: (a) You have a full house with 3 aces, or better. That is, you have a royal flush, straight flush, 4 of a kind, or a full house with 3 aces. (b) Your best 5-card hand must use both of your hole cards. [Ignore the possibility of ambiguity as to whether your hole card plays, such as where you have A5 and the board is AA553.] (iv) Given that you make a hand satisfying Condition (a), what is the probability that you satisfy Condition (b)? Imagine ordering the 7 cards so that the first 5 are the ones actually used. Whats the chance that your 2 cards are in those first 5? = P(your first card is in those 5 AND your 2nd card is in those 5) = 5/7 * 4/6 = 47.6%

Many 2-card hands that seem weak nevertheless have some chance of being two- player jackpot hands. If you have 94, it is possible for you and your opponent to both make jackpot hands, if for instance the board comes something like 44477, and your opponent has 77. (v)Are there any 2-card hands you could have such that, no matter what your opponent has and no matter what the board is, you and your opponent cannot possibly both have jackpot hands? List them. Only 32 offsuit. To satisfy (b), the board must be or 33322….

6. Random walks. Suppose that X 1, X 2, …, are iid and that Y k = X 1 + … + X k for k = 1, 2, …. Y 0 = 0. Then the totals {Y 1, Y 2, …} is a random walk. The classical example is when each X i is 1 or -1 with probability ½ each. For the classical random walk,. P(Y k = j) = Choose{k, (k+j)/2} (1/2) k..If j and k are > 0, then the number of paths from (0,j) to (n,k) that touch the x-axis = the number of paths from (0,-j) to (n,y). [reflection principle].In an election, if candidate X gets x votes, and candidate Y gets y votes, where x > y, then the probability that X always leads Y throughout the counting is (x-y) / (x+y). [ballot theorem].P(Y 1 0, Y 2 0, …, Y 2n 0) = P(Y 2n = 0).

Ballot theorem. Suppose that in an election, candidate X gets x votes, and candidate Y gets y votes, where x > y. The probability that X always leads Y throughout the counting is (x-y) / (x+y). Proof. We know that, after counting n = x+y votes, the total difference in votes is x-y = a. We want to count the number of paths from (1,1) to (n,a) that do not touch the x-axis. By the reflection principle, the number of paths from (1,1) to (n,a) that do touch the x-axis equals the total number of paths from (1,-1) to (n,a). So the number of paths from (1,1) to (n,a) that do not touch the x-axis equals the number of paths from (1,1) to (n,a) minus the number of paths from (1,-1) to (n,a) = Choose(n-1,x-1) – Choose(n-1,x) = (n-1)! / [(x-1)! (n-x)!] – (n-1)! / [x! (n-x-1)!] = (n-1)! x / [x! (n-x)!] – (n-1)! (n-x) / [x! (n-x)!] = {n! / [x! (n-x)!]} (x/n) – {n! / [x! (n-x)!]} (n-x)/n = (x – y) / (x+y) {n! / [x! (n-x)!]} = (x – y) / (x+y) {Number of paths from (0,0) to (n,a)}. And each path is equally likely.

For a classical random walk, P(Y 1 0, Y 2 0, …, Y 2n 0) = P(Y 2n = 0). Proof. The number of paths from (0,0) to (2n, 2r) that dont touch the x-axis at positive times = the number of paths from (1,1) to (2n,2r) that dont touch the x-axis at positive times = paths from (1,1) to (2n,2r) - paths from (1,-1) to (2n,2r) by reflection principle = N 2n-1,2r-1 – N 2n-1,2r+1 Let p n,x = P(Y n = x). P(Y 1 > 0, Y 2 > 0, …, Y 2n-1 > 0, Y 2n = 2r) = ½[p 2n-1,2r-1 – p 2n-1,2r+1 ]. Summing from r = 1 to, P(Y 1 > 0, Y 2 > 0, …, Y 2n-1 > 0, Y 2n > 0) = ½[p 2n-1,1 – p 2n-1,3 ] + ½[p 2n-1,3 – p 2n-1,5 ] + ½[p 2n-1,5 – p 2n-1,7 ] + … = (1/2) p 2n-1,1 = (1/2) P(Y 2n = 0). By symmetry, the same is true for P(Y 1 < 0, Y 2 < 0, …, Y 2n-1 < 0, Y 2n < 0). So, P(Y 1 0, Y 2 0, …, Y 2n 0) = P(Y 2n = 0).