Chapter 4 - Program Control

Slides:



Advertisements
Similar presentations
 2003 Prentice Hall, Inc. All rights reserved. 1 Chapter 2 - Control Structures Outline 2.11 Assignment Operators 2.12 Increment and Decrement Operators.
Advertisements

© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. 1 Chapter 4 – C Program Control Outline 4.1Introduction.
 2008 Pearson Education, Inc. All rights reserved Control Statements: Part 2.
C Lecture Notes 1 Program Control (Cont...). C Lecture Notes 2 4.8The do / while Repetition Structure The do / while repetition structure –Similar to.
Control Statements (II) Ying Wu Electrical & Computer Engineering Northwestern University ECE230 Lectures Series.
Control Structures in C++ while, do/while, for switch, break, continue.
 2007 Pearson Education, Inc. All rights reserved C Program Control.
 2000 Prentice Hall, Inc. All rights reserved. Chapter 4 - Program Control Outline 4.1Introduction 4.2The Essentials of Repetition 4.3Counter-Controlled.
 2007 Pearson Education, Inc. All rights reserved C Program Control.
 2008 Pearson Education, Inc. All rights reserved JavaScript: Control Statements II.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved The switch Multiple-Selection Statement switch.
 2000 Prentice Hall, Inc. All rights reserved. 1 Chapter 2 - Control Structures Outline 2.1Introduction 2.2Algorithms 2.3Pseudocode 2.4Control Structures.
C How to Program, 6/e Summary © by Pearson Education, Inc. All Rights Reserved.
1 Lecture 4 for loops and switch statements Essentials of Counter-Controlled Repetition Counter-controlled repetition requires  Name of control.
 2003 Prentice Hall, Inc. All rights reserved. 1 Control Structures Outline Assignment Operators Increment and Decrement Operators Essentials of Counter-Controlled.
 2000 Prentice Hall, Inc. All rights reserved. 1 Chapter 4 - Program Control Outline 4.1Introduction 4.2The Essentials of Repetition 4.3Counter-Controlled.
Lecture 10: Reviews. Control Structures All C programs written in term of 3 control structures Sequence structures Programs executed sequentially by default.
Internet & World Wide Web How to Program, 5/e © by Pearson Education, Inc. All Rights Reserved.
Internet & World Wide Web How to Program, 5/e © by Pearson Education, Inc. All Rights Reserved.
Lecture 4 C Program Control Acknowledgment The notes are adapted from those provided by Deitel & Associates, Inc. and Pearson Education Inc.
1 4.8The do/while Repetition Structure The do/while repetition structure –Similar to the while structure –Condition for repetition tested after the body.
Algorithm and Programming Branching Algorithm & C Program Control Dr. Ir. Riri Fitri Sari MM MSc International Class Electrical Engineering Dept University.
C Program Control Angela Chih-Wei Tang ( 唐 之 瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan 2010 Fall.
Internet & World Wide Web How to Program, 5/e © by Pearson Education, Inc. All Rights Reserved.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. 1 Flow Control (Switch, do-while, break) Outline 4.7The.
Chapter 4 C Program Control. Objectives In this chapter, you will learn: –To be able to use the for and do … while repetition statements. –To understand.
 2000 Prentice Hall, Inc. All rights reserved. 1 Chapter 2 - Control Structures Outline 2.1Introduction 2.2Algorithms 2.3Pseudocode 2.4Control Structures.
© Copyright 1992–2004 by Deitel & Associates, Inc. and Pearson Education Inc. All Rights Reserved. 1 Flow Control (for) Outline 4.1Introduction 4.2The.
Spring 2005, Gülcihan Özdemir Dağ Lecture 5, Page 1 BIL104E: Introduction to Scientific and Engineering Computing, Spring Lecture 5 Outline 5.0 Revisiting.
 2000 Deitel & Associates, Inc. All rights reserved. Chapter 2 - Control Structures Outline 2.1Introduction 2.2Algorithms 2.3Pseudocode 2.4Control Structures.
Chapter 3 - Structured Program Development Outline 3.1Introduction 3.2Algorithms 3.3Pseudocode 3.4Control Structures 3.5The If Selection Structure 3.6The.
Control Statements in C 1.Decision making statements 2.Looping statements 3.Branching statements
 2000 Prentice Hall, Inc. All rights reserved. 1 Chapter 4 - Program Control Outline 4.1Introduction 4.2The Essentials of Repetition 4.3Counter-Controlled.
 2007 Pearson Education, Inc. All rights reserved C Program Control.
C Program Control September 15, OBJECTIVES The essentials of counter-controlled repetition. To use the for and do...while repetition statements.
BIL 104E Introduction to Scientific and Engineering Computing Lecture 6.
Internet & World Wide Web How to Program, 5/e © by Pearson Education, Inc. All Rights Reserved.
Dale Roberts Program Control Department of Computer and Information Science, School of Science, IUPUI Fall 2003 CSCI 230 Dale Roberts, Lecturer
 2003 Prentice Hall, Inc. All rights reserved. ECE 2551 Dr. S. Kozaitis Fall Chapter 5 - Control Statements: Part 2 Outline 5.3 for Repetition.
 2008 Pearson Education, Inc. All rights reserved Control Statements: Part 2.
Chapter 9 - JavaScript: Control Statements II
Chapter 4 – C Program Control
The if…else Selection Statement
Chapter 4 C Program Control Part I
- Standard C Statements
Lecture 7: Repeating a Known Number of Times
Control Statements: Part 2
Chapter 4 - Program Control
Chapter 2.1 Control Structures (Selection)
TMF1414 Introduction to Programming
Control Statements: Part 2
- Additional C Statements
Chapter 8 JavaScript: Control Statements, Part 2
Structured Program
Chapter 4 - Program Control
4 C Program Control.
Program Control Topics While loop For loop Switch statement
Chapter 6 Control Statements: Part 2
Capitolo 2 - Control Structures
2.6 The if/else Selection Structure
Chapter 5 – Control Structures: Part 2
Dale Roberts, Lecturer IUPUI
Dale Roberts, Lecturer IUPUI
Dale Roberts, Lecturer IUPUI
Lec 6 Loop Statements Introduction to Computer Programming
Lecture 9: Implementing Complex Logic
Chapter 8 JavaScript: Control Statements, Part 2
Presentation transcript:

Chapter 4 - Program Control Outline 4.1 Introduction 4.2 The Essentials of Repetition 4.3 Counter-Controlled Repetition 4.4 The For Repetition Structure 4.5 The For Structure: Notes and Observations 4.6 Examples Using the For Structure 4.7 The Switch Multiple-Selection Structure 4.8 The Do/While Repetition Structure 4.9 The break and continue Statements 4.10 Logical Operators 4.11 Confusing Equality (==) and Assignment (=) Operators 4.12 Structured Programming Summary

This chapter introduces 4.1 Introduction This chapter introduces Additional repetition control structures for do/while switch multiple selection structure break statement Used for exiting immediately and rapidly from certain control structures continue statement Used for skipping the remainder of the body of a repetition structure and proceeding with the next iteration of the loop

4.2 The Essentials of Repetition Loop Group of instructions computer executes repeatedly while some condition remains true Counter-controlled repetition Definite repetition: know how many times loop will execute Control variable used to count repetitions Sentinel-controlled repetition Indefinite repetition Used when number of repetitions not known Sentinel value indicates "end of data"

4.3 Essentials of Counter-Controlled Repetition Counter-controlled repetition requires The name of a control variable (or loop counter) The initial value of the control variable A condition that tests for the final value of the control variable (i.e., whether looping should continue) An increment (or decrement) by which the control variable is modified each time through the loop

4.3 Essentials of Counter-Controlled Repetition Example: int counter = 1; // initialization while ( counter <= 10 ) { // repetition condition printf( "%d\n", counter ); ++counter; // increment } The statement int counter = 1; Names counter Declares it to be an integer Reserves space for it in memory Sets it to an initial value of 1

4.4 The for Repetition Structure Format when using for loops for ( initialization; loopContinuationTest; increment ) statement Example: for( int counter = 1; counter <= 10; counter++ ) printf( "%d\n", counter ); Prints the integers from one to ten   No semicolon (;) after last expression

4.4 The for Repetition Structure For loops can usually be rewritten as while loops: initialization; while ( loopContinuationTest ) { statement; increment; } Initialization and increment Can be comma-separated lists Example: for (int i = 0, j = 0; j + i <= 10; j++, i++) printf( "%d\n", j + i );

4.5 The for Structure: Notes and Observations Arithmetic expressions Initialization, loop-continuation, and increment can contain arithmetic expressions. If x equals 2 and y equals 10 for ( j = x; j <= 4 * x * y; j += y / x ) is equivalent to for ( j = 2; j <= 80; j += 5 ) Notes about the for structure: "Increment" may be negative (decrement) If the loop continuation condition is initially false The body of the for structure is not performed Control proceeds with the next statement after the for structure Control variable Often printed or used inside for body, but not necessary

Initialize variables for repetition structure Program Output 1 /* Fig. 4.5: fig04_05.c 2 Summation with for */ 3 #include <stdio.h> 4 5 int main() 6 { 7 int sum = 0, number; 8 9 for ( number = 2; number <= 100; number += 2 ) 10 sum += number; 11 12 printf( "Sum is %d\n", sum ); 13 14 return 0; 15 } Initialize variables for repetition structure Program Output   Sum is 2550

4.7 The switch Multiple-Selection Structure Useful when a variable or expression is tested for all the values it can assume and different actions are taken Format Series of case labels and an optional default case switch ( value ){ case '1': actions case '2': default: } break; exits from structure  

4.7 The switch Multiple-Selection Structure Flowchart of the switch structure true false . case a case a action(s) break case b case b action(s) case z case z action(s) default action(s)

2.1 Use switch loop to update count 1 /* Fig. 4.7: fig04_07.c 2 Counting letter grades */ 3 #include <stdio.h> 4 5 int main() 6 { 7 int grade; 8 int aCount = 0, bCount = 0, cCount = 0, 9 dCount = 0, fCount = 0; 10 11 printf( "Enter the letter grades.\n" ); 12 printf( "Enter the EOF character to end input.\n" ); 13 14 while ( ( grade = getchar() ) != EOF ) { 15 16 switch ( grade ) { /* switch nested in while */ 17 18 case 'A': case 'a': /* grade was uppercase A */ 19 ++aCount; /* or lowercase a */ 20 break; 21 22 case 'B': case 'b': /* grade was uppercase B */ 23 ++bCount; /* or lowercase b */ 24 break; 25 26 case 'C': case 'c': /* grade was uppercase C */ 27 ++cCount; /* or lowercase c */ 28 break; 29 30 case 'D': case 'd': /* grade was uppercase D */ 31 ++dCount; /* or lowercase d */ 32 break; 1. Initialize variables 2. Input data 2.1 Use switch loop to update count

2.1 Use switch loop to update count 3. Print results 33 34 case 'F': case 'f': /* grade was uppercase F */ 35 ++fCount; /* or lowercase f */ 36 break; 37 38 case '\n': case' ': /* ignore these in input */ 39 break; 40 41 default: /* catch all other characters */ 42 printf( "Incorrect letter grade entered." ); 43 printf( " Enter a new grade.\n" ); 44 break; 45 } 46 } 47 48 printf( "\nTotals for each letter grade are:\n" ); 49 printf( "A: %d\n", aCount ); 50 printf( "B: %d\n", bCount ); 51 printf( "C: %d\n", cCount ); 52 printf( "D: %d\n", dCount ); 53 printf( "F: %d\n", fCount ); 54 55 return 0; 56 } 2.1 Use switch loop to update count 3. Print results

Program Output Enter the letter grades. Enter the EOF character to end input. A B C D F E Incorrect letter grade entered. Enter a new grade. Totals for each letter grade are: A: 3 B: 2 C: 3 D: 2 F: 1 Program Output

4.8 The do/while Repetition Structure Similar to the while structure Condition for repetition tested after the body of the loop is performed All actions are performed at least once Format: do { statement; } while ( condition );  

4.8 The do/while Repetition Structure Example (letting counter = 1): do { printf( "%d ", counter ); } while (++counter <= 10); Prints the integers from 1 to 10  

4.8 The do/while Repetition Structure Flowchart of the do/while repetition structure true false action(s) condition

1. Initialize variable 2. Loop 3. Print Program Output 1 /* Fig. 4.9: fig04_09.c 2 Using the do/while repetition structure */ 3 #include <stdio.h> 4 5 int main() 6 { 7 int counter = 1; 8 9 do { 10 printf( "%d ", counter ); 11 } while ( ++counter <= 10 ); 12 13 return 0; 14 } 1. Initialize variable 2. Loop 3. Print Program Output 1 2 3 4 5 6 7 8 9 10

4.9 The break and continue Statements Causes immediate exit from a while, for, do/while or switch structure Program execution continues with the first statement after the structure Common uses of the break statement Escape early from a loop Skip the remainder of a switch structure

4.9 The break and continue Statements Skips the remaining statements in the body of a while, for or do/while structure Proceeds with the next iteration of the loop while and do/while Loop-continuation test is evaluated immediately after the continue statement is executed for Increment expression is executed, then the loop-continuation test is evaluated

1. Initialize variable 2. Loop 3. Print Program Output 1 /* Fig. 4.12: fig04_12.c 2 Using the continue statement in a for structure */ 3 #include <stdio.h> 4 5 int main() 6 { 7 int x; 8 9 for ( x = 1; x <= 10; x++ ) { 10 11 if ( x == 5 ) 12 continue; /* skip remaining code in loop only 13 if x == 5 */ 14 15 printf( "%d ", x ); 16 } 17 18 printf( "\nUsed continue to skip printing the value 5\n" ); 19 return 0; 20 } 1. Initialize variable 2. Loop 3. Print Program Output 1 2 3 4 6 7 8 9 10 Used continue to skip printing the value 5

! ( logical NOT, logical negation ) 4.10 Logical Operators && ( logical AND ) Returns true if both conditions are true || ( logical OR ) Returns true if either of its conditions are true ! ( logical NOT, logical negation ) Reverses the truth/falsity of its condition Unary operator, has one operand Useful as conditions in loops Expression Result true && false false true || false true !false true

4.11 Confusing Equality (==) and Assignment (=) Operators Dangerous error Does not ordinarily cause syntax errors Any expression that produces a value can be used in control structures Nonzero values are true, zero values are false Example using ==: if ( payCode == 4 ) printf( "You get a bonus!\n" ); Checks paycode, if it is 4 then a bonus is awarded

4.11 Confusing Equality (==) and Assignment (=) Operators Example, replacing == with =: if ( payCode = 4 ) printf( "You get a bonus!\n" ); This sets paycode to 4 4 is nonzero, so expression is true, and bonus awarded no matter what the paycode was Logic error, not a syntax error

4.11 Confusing Equality (==) and Assignment (=) Operators lvalues Expressions that can appear on the left side of an equation Their values can be changed, such as variable names x = 4; rvalues Expressions that can only appear on the right side of an equation Constants, such as numbers Cannot write 4 = x; Must write x = 4; lvalues can be used as rvalues, but not vice versa y = x;

4.12 Structured-Programming Summary Easier than unstructured programs to understand, test, debug and, modify programs Rules for structured programming Rules developed by programming community Only single-entry/single-exit control structures are used Rules: Begin with the “simplest flowchart” Any rectangle (action) can be replaced by two rectangles (actions) in sequence Any rectangle (action) can be replaced by any control structure (sequence, if, if/else, switch, while, do/while or for) Rules 2 and 3 can be applied in any order and multiple times    

4.12 Structured-Programming Summary Rule 2 - Any rectangle can be replaced by two rectangles in sequence Rule 1 - Begin with the simplest flowchart . . . Rule 2

4.12 Structured-Programming Summary Rule 3 - Replace any rectangle with a control structure Rule 3 Rule 3 Rule 3

4.12 Structured-Programming Summary All programs can be broken down into 3 controls Sequence – handled automatically by compiler Selection – if, if/else or switch Repetition – while, do/while or for Can only be combined in two ways Nesting (rule 3) Stacking (rule 2) Any selection can be rewritten as an if statement, and any repetition can be rewritten as a while statement