Instructor: Gregory Fleishman

Slides:



Advertisements
Similar presentations
By: Paul Lim and Bear Elders. Most dense and cold concentrations of interstellar gas 0~100K’ degrees cold Really dark due to dust particles that extinguishes.
Advertisements

The Propagation Distance and Sources of Interstellar Turbulence Steven R. Spangler University of Iowa.
Strange Galactic Supernova Remnants G (the Tornado) & G in X-rays Anant Tanna Physics IV 2007 Supervisor: Prof. Bryan Gaensler.
To date: Observational manifestations of dust: 1.Extinction – absorption/scattering diminishes flux at wavelengths comparable to light – implies particles.
Sub-THz Component of Large Solar Flares Emily Ulanski December 9, 2008 Plasma Physics and Magnetohydrodynamics.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 4. Linear Waves in the Plasma 30 September 2008.
Challenges in Revealing Dark Matter from the High Energy Gamma-Ray Background (Continuum) Ranga-Ram Chary Spitzer Science Center, Caltech
Galactic Diffuse Gamma-ray Emission, the EGRET Model, and GLAST Science Stanley D. Hunter NASA/GSFC Code 661
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 1. Introduction 2 September 2008.
Physics of fusion power Lecture 11: Diagnostics / heating.
The Interstellar Medium Astronomy 315 Professor Lee Carkner Lecture 19.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 12. Particle Acceleration 18 November 2008.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 11. Particle Transport 11 November 2008.
Simulating the Gamma Ray Sky Andrew McLeod SASS August 12, 2009.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 6. Transport of Radiation 14 October 2008.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 8. Weak Turbulence and Magnetic Reconnection 21 October.
Galactic Magnetic Field Research with LOFAR Wolfgang Reich Max-Planck-Institut für Radioastronomie Bonn, Germany.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 5. Microscopic Emission Processes in the Plasma 07 October.
Radio Emission from Masuda Sources New Jersey Institute of Technology Sung-Hong Park.
A Herschel Galactic Plane Survey of [NII] Emission: Preliminary Results Paul F. Goldsmith Umut Yildiz William D. Langer Jorge L. Pineda Jet Propulsion.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
1 射电天文基础 姜碧沩北京师范大学天文系 2009/08/24-28 日,贵州大学. 2009/08/24-28 日射电天文暑期学校 2 Spectral Line Fundamentals The Einstein Coefficients Radiative Transfer with Einstein.
Attenuation by absorption and scattering
ASTR112 The Galaxy Lecture 8 Prof. John Hearnshaw 12. The interstellar medium (ISM): gas 12.1 Types of IS gas cloud 12.2 H II regions (diffuse gaseous.
Yutaka Fujita (Osaka U.) Fuijta, Takahara, Ohira, & Iwasaki, 2011, MNRAS, in press (arXiv: )
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
The Warm-hot Gaseous Halo of the Milky Way Smita Mathur The Ohio State University With Anjali Gupta, Yair Krongold, Fabrizio Nicastro, M. Galeazzi.
Photoionisation of Supernova Driven, Turbulent, MHD Simulations of the Diffuse Ionised Gas Jo Barnes 1, Kenny Wood 1, Alex Hill 2 [1]University of St Andrews,
ATUC Science Meeting 24 th Oct 2011 Radio emission from CU Virginis Kitty Lo Collaborators: Justin Bray, George Hobbs, Tara Murphy, Bryan Gaensler, Don.
Spectra of partially self-absorbed jets Christian Kaiser University of Southampton Christian Kaiser University of Southampton.
Measurements in Fluid Mechanics 058:180:001 (ME:5180:0001) Time & Location: 2:30P - 3:20P MWF 218 MLH Office Hours: 4:00P – 5:00P MWF 223B-5 HL Instructor:
GEOL3045: Planetary Geology Lysa Chizmadia The Sun & Ulysses Lysa Chizmadia The Sun & Ulysses.
First Result of Urumqi 6cm Polarization Observations: Xiaohui Sun, Wolfgang Reich JinLin Han, Patricia Reich, Richard Wielebinski Partner Group of MPIfR.
Why Solar Electron Beams Stop Producing Type III Radio Emission Hamish Reid, Eduard Kontar SUPA School of Physics and Astronomy University of Glasgow,
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
Radio Waves Interaction With Interstellar Matter
Observations of the Large Magellanic Cloud with Fermi Jürgen Knödlseder (Centre d’Etude Spatiale des Rayonnements) On behalf of the Fermi/LAT collaboration.
H 3 + Toward and Within the Galactic Center Tom Geballe, Gemini Observatory With thanks to Takeshi Oka, Ben McCall, Miwa Goto, Tomonori Usuda.
Some atomic physics u H I, O III, Fe X are spectra –Emitted by u H 0, O 2+, Fe 9+ –These are baryons u For absorption lines there is a mapping between.
The Interstellar Medium. Red, White, and Blue : Nebulae.
ISM X-ray Astrophysics Randall K. Smith Chandra X-ray Center.
Interstellar turbulent plasma spectrum from multi-frequency pulsar observations Smirnova T. V. Pushchino Radio Astronomy Observatory Astro Space Center.
Shock-cloud interaction in the Vela SNR: the XMM-Newton view M. Miceli 1, F. Bocchino 2, A. Maggio 2, F. Reale 1 1.Dipartimento di Scienze Fisiche ed Astronomiche,
1 Probing MHD Shocks with high-J CO observations: W28F SOFIA Observations 1.W28 is a mature supernova remnant (>2x10 4 yr old) located in the Inner Galaxy.
ASTR112 The Galaxy Lecture 9 Prof. John Hearnshaw 12. The interstellar medium: gas 12.3 H I clouds (and IS absorption lines) 12.4 Dense molecular clouds.
Space physics EF2245 Tomas Karlsson Space and Plasma Physics School of Electrical Engineering EF2245 Space Physics 2010.
1 Radio – FIR Spectral Energy Distribution of Young Starbursts Hiroyuki Hirashita 1 and L. K. Hunt 2 ( 1 University of Tsukuba, Japan; 2 Firenze, Italy)
ASTR 402 Observational Astronomy 11 April 2006 Dr. H. Geller.
Dejan Urošević Department of Astronomy, Faculty of Mathematics, University of Belgrade Supernova remnants: evolution, statistics, spectra.
The impact of magnetic turbulence spectrum on particle acceleration in SNR IC443 I.Telezhinsky 1,2, A.Wilhelm 1,2, R.Brose 1,3, M.Pohl 1,2, B.Humensky.
SNRs and PWN in the Chandra Era – S. OrlandoBoston, USA – July 2009 S. Orlando 1, O. Petruk 2, F. Bocchino 1, M. Miceli 3,1 1 INAF - Osservatorio Astronomico.
Eugenio Ursino on behalf of the UM Astrophysics Group University of Miami, USA Looking for the Missing Baryons.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
A Global Hybrid Simulation Study of the Solar Wind Interaction with the Moon David Schriver ESS 265 – June 2, 2005.
Netherlands Organisation for Scientific Research High resolution X-ray spectroscopy of the Interstellar Medium (ISM) C. Pinto (SRON), J. S. Kaastra (SRON),
Diffusive shock acceleration: an introduction
Topics on Dark Matter Annihilation
SWCX and Properties of the Local Hot Bubble from DXL Mission
The Galactic Interstellar Halo
Diagnosing kappa distribution in the solar corona with the polarized microwave gyroresonance radiation Alexey A. Kuznetsov1, Gregory D. Fleishman2 1Institute.
Radiation.
Galactic Astronomy 銀河物理学特論 I Lecture 1-6: Multi-wavelength properties of galaxies Seminar: Draine et al. 2007, ApJ, 663, 866 Lecture: 2011/11/14.
Investigating the Cosmic-Ray Ionization Rate in the Galactic Interstellar Medium through Observations of H3+ Nick Indriolo,1 Ben McCall,1 Tom Geballe,2.
University of Minnesota
Diffusive shock acceleration: an introduction – cont.
Proxima (TRAPPIST1) Exreme Events
Spectroscopy of solar prominences simultaneously from space and ground
Cornelia C. Lang University of Iowa collaborators:
Presentation transcript:

Instructor: Gregory Fleishman Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Low-frequency radiation of the Galaxy F. Urtyev 9 December 2008

Study of the galactic low-frequency radiation (The Explorer 43) ULYSSES IMP-6 91 m dipole antenna Date of launch: 1971 WAVES 100 m dipole antenna Date of launch: 1994 ULYSSES 72 m dipole antenna Date of launch: 1994

* - Brown (IMP-6) Spectrum of the low-frequency galactic radiation Intensity Index of modulation [] – ISEE-3 (and ◊) O – Ulysses (Hoang) * - Brown (IMP-6) Tokarev et al, 2000 Dulk et al., 2001

Emissivity hot phase ISM component (ne=3*10-3 cm-3, T=104 K, B=3*10-6 G) warm phase ISM component (ne=3*10-2 cm-3, T=106 K , B=3*10-6 G) local cloud component near the Earth (ne=3*10-1 cm-3, T=7000K , B=3*10-6 G) α – filling factor τ – optical depth ε – emisivity k – coefficient of absorption

Emissivity of Interstellar medium

Emissivity of Interstellar medium

Emissivity of Interstellar medium

Absorption warm phase ISM component (ne=0.05 cm-3, T=5*103 K, Leff=0.5 kpc, filling factor α=50%) Reynolds clouds (zones of H II with low surface brightness) ne=0.2 cm-3, T=104 K, l=30-50 pc, filling factor α=20-50% local cloud component near the Earth (ne=3*10-1 cm-3, T=7000K , B=3*10-6 G)

T=20000 K

Low-frequency background radiation spectra Reynolds clouds ne=0.2 cm-3, T=2*104 K, l=40 pc, filling factor α=20 % hot ISM ne=3*10-3 cm-3, T=104 K, B=3*10-6 G warm ISM ne=3*10-2 cm-3, T=106 K local cloud ne=3*10-1 cm-3, T=7000K

Anisotropy

Anisotropy

Conclusion? Processes of radiation and propagation for low-frequency emission of the Galaxy significantly interact with surrounding medium Direct modeling of sources for this radiation will be able not only predict distribution of charged particles and spatial structure of magnetic fields in source but also will help to estimate parameters of different components of interstellar medium (density, temperature, filling factors) It could also help to check available models of ISM to ability for adequately description of observational data