A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van.

Slides:



Advertisements
Similar presentations
Influence of Flow-Independent Viscoelasticity
Advertisements

Date of download: 11/16/2017 Copyright © ASME. All rights reserved.
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
Anisotropy of collagen fibre alignment in bovine cartilage: comparison of polarised light microscopy and spatially resolved diffusion-tensor measurements 
Tribological and material properties for cartilage of and throughout the bovine stifle: support for the altered joint kinematics hypothesis of osteoarthritis 
Application of second derivative spectroscopy for increasing molecular specificity of fourier transform infrared spectroscopic imaging of articular cartilage 
Hisham A. Alhadlaq, M.S., Yang Xia, Ph.D.  Osteoarthritis and Cartilage 
The groove model of osteoarthritis applied to the ovine fetlock joint
The role of endplate poromechanical properties on the nutrient availability in the intervertebral disc  A. Malandrino, D. Lacroix, C. Hellmich, K. Ito,
Deformation patterns of cracked articular cartilage under compression
P.-S. Hsu, H.-H. Lin, C.-R. Li, W.-S. Chung 
Cell deformation behavior in mechanically loaded rabbit articular cartilage 4 weeks after anterior cruciate ligament transection  S.M. Turunen, S.-K.
Clinical outcome of autologous chondrocyte implantation is correlated with infrared spectroscopic imaging-derived parameters  A. Hanifi, J.B. Richardson,
H.T. Kokkonen, J.S. Jurvelin, V. Tiitu, J. Töyräs 
Osteoarthritis as a disease of mechanics
In situ deformation of cartilage in cyclically loaded tibiofemoral joints by displacement- encoded MRI  D.D. Chan, C.P. Neu, M.L. Hull  Osteoarthritis.
Volume 107, Issue 11, Pages (December 2014)
A.R. Gannon, T. Nagel, D.J. Kelly  Osteoarthritis and Cartilage 
S.M.T. Chan, C.P. Neu, G. DuRaine, K. Komvopoulos, A.H. Reddi 
Meniscus and cartilage exhibit distinct intra-tissue strain distributions under unconfined compression  J.H. Lai, M.E. Levenston  Osteoarthritis and Cartilage 
Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection; chondrocyte shape and deformation with compression  A.L.
David A. Vorp, PhD, M.L. Raghavan, BS, Marshall W. Webster, MD 
A novel exogenous concentration-gradient collagen scaffold augments full-thickness articular cartilage repair  T. Mimura, M.D., S. Imai, M.D., M. Kubo,
P.A. Torzilli, M. Bhargava, S. Park, C.T.C. Chen 
Spontaneous osteoarthritis in Str/ort mice is unlikely due to greater vulnerability to mechanical trauma  B. Poulet, T.A.T. Westerhof, R.W. Hamilton,
B. Kaleem, F. Maier, H. Drissi, D.M. Pierce 
Multi-scalar mechanical testing of the calcified cartilage and subchondral bone comparing healthy vs early degenerative states  E. Hargrave-Thomas, F.
Mechanical response of articular cartilage damaged by macro cracks
Differences in trabecular bone texture between knees with and without radiographic osteoarthritis detected by fractal methods  P. Podsiadlo, Ph.D., L.
Estimation of mechanical properties of articular cartilage with MRI – dGEMRIC, T2 and T1 imaging in different species with variable stages of maturation 
P. Julkunen, J. Iivarinen, P. A. Brama, J. Arokoski, J. S. Jurvelin, H
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
A. Hosseini, S. K. Van de Velde, M. Kozanek, T. J. Gill, A. J
Structural characteristics of the collagen network in human normal, degraded and repair articular cartilages observed in polarized light and scanning.
L. McCann, E. Ingham, Z. Jin, J. Fisher  Osteoarthritis and Cartilage 
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading  R.L. Mauck, C.C-B. Wang, E.S.
Cartilage-on-cartilage contact: effect of compressive loading on tissue deformations and structural integrity of bovine articular cartilage  L. Zevenbergen,
Cartilage shear dynamics during tibio-femoral articulation: effect of acute joint injury and tribosupplementation on synovial fluid lubrication  B.L.
Structural adaptations in compressed articular cartilage measured by diffusion tensor imaging  S.K. de Visser, B.Eng. (Med.), R.W. Crawford, D.Phil.,
Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulations  L.M. Kock, A. Ravetto, C.C. van Donkelaar, J.
The contribution of collagen fibers to the mechanical compressive properties of the temporomandibular joint disc  S. Fazaeli, S. Ghazanfari, V. Everts,
New insights into the role of the superficial tangential zone in influencing the microstructural response of articular cartilage to compression  S.L.
Electroarthrography: a novel method to assess articular cartilage and diagnose osteoarthritis by non-invasive measurement of load-induced electrical potentials.
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
S. Zheng, Y. Xia  Osteoarthritis and Cartilage 
Meniscectomy alters the dynamic deformational behavior and cumulative strain of tibial articular cartilage in knee joints subjected to cyclic loads  Y.
In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner  J.M. Fick, M.R.J. Huttu, M.J.
Intermittent mechanical loading of articular cartilage explants modulates chondroitin sulfate fine structure  K. Sauerland, Ph.D., J. Steinmeyer, Ph.D. 
J.L. Huebner, J.M. Williams, M. Deberg, Y. Henrotin, V.B. Kraus 
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Bone structural changes in osteoarthritis as a result of mechanoregulated bone adaptation: a modeling approach  L.G.E. Cox, B. van Rietbergen, C.C. van.
Finite element analysis of mechanical behavior of human dysplastic hip joints: a systematic review  B. Vafaeian, D. Zonoobi, M. Mabee, A.R. Hareendranathan,
W.C. Bae, Ph.D., B.L. Schumacher, B.S., R.L. Sah, M.D., Sc.D. 
Microstructural analysis of collagen and elastin fibres in the kangaroo articular cartilage reveals a structural divergence depending on its local mechanical.
Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair  A.C. Kuo, M.D., Ph.D., J.J. Rodrigo, M.D.,
D.J. Hunter  Osteoarthritis and Cartilage 
Cartilage growth and remodeling: modulation of balance between proteoglycan and collagen network in vitro with β-aminopropionitrile  A. Asanbaeva, Ph.D.,
Osteoarthritis year 2012 in review: biology
C. R. Henak, E. D. Carruth, A. E. Anderson, M. D. Harris, B. J
Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation  L.G.E. Cox, C.C. van Donkelaar,
Location-specific hip joint space width for progression of hip osteoarthritis – Data from the Osteoarthritis Initiative  C. Ratzlaff, C. Van Wyngaarden,
R. B. Souza, C. Stehling, B. T. Wyman, M. -P. Hellio Le Graverand, X
Systematic review of the impact of osteoarthritis on health outcomes for comorbid disease in older people  L. Parkinson, D.L. Waters, L. Franck  Osteoarthritis.
R. Meder, Ph. D. , S. K. de Visser, B. Eng. (Med. ), J. C. Bowden, B
Evaluating Intramural Virtual Electrodes in the Myocardial Wedge Preparation: Simulations of Experimental Conditions  G. Plank, A. Prassl, E. Hofer, N.A.
Osteoarthritis year in review 2016: mechanics
W.J. Anderst, M.S., C. Les, D.V.M., Ph.D., S. Tashman, Ph.D. 
Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study  S. Farrokhi, J.H. Keyak, C.M. Powers 
Presentation transcript:

A numerical model to study mechanically induced initiation and progression of damage in articular cartilage  S.M. Hosseini, W. Wilson, K. Ito, C.C. van Donkelaar  Osteoarthritis and Cartilage  Volume 22, Issue 1, Pages 95-103 (January 2014) DOI: 10.1016/j.joca.2013.10.010 Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Damage model, showing the damage variable (D) as a function of the strain history variable (κ, ranging from κ0 to κc) (left) and the corresponding softening of the constituent, visualized by the stress-strain behavior of the tissue (right). Osteoarthritis and Cartilage 2014 22, 95-103DOI: (10.1016/j.joca.2013.10.010) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 2D finite element mesh of the cartilage sample and the indenter. The bottom is fixed to simulate attachment to the bone. Arrows indicate free surfaces with unrestricted water flow. Osteoarthritis and Cartilage 2014 22, 95-103DOI: (10.1016/j.joca.2013.10.010) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Damage distribution in the fibers (a,c) and the ground substance (b,d) at the end of the loading protocol when only fiber damage (a), only ground substance damage (b), or both are allowed to occur in parallel (c,d). Colors represent the magnitude of damage parameter D, which is quantitatively shown in (e) as a function of depth from the surface (0 mm) to the bone (1 mm) over an imaginary line centrally under the indenter (indicated as a dash white line in (a)). Osteoarthritis and Cartilage 2014 22, 95-103DOI: (10.1016/j.joca.2013.10.010) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 The profile of damage at the end of the stress-relaxation period following each of the four subsequent loading cycles shows progression of the damage over time. The horizontal axis represents an imaginary line centrally under the indenter from the surface (0 mm) to the bone (1 mm), similar to Fig. 3(e). Top: damage in the ground substance; bottom: damage in the collagen fiber network. Osteoarthritis and Cartilage 2014 22, 95-103DOI: (10.1016/j.joca.2013.10.010) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Damage in the fibrillar network was dependent on the fiber orientation, as shown here for the simulation in which fiber damage was only allowed to occur. a: Damage in one of the primary fibers with an arcade-like orientation. b: Damage in the secondary fiber compartment that has a horizontal orientation. Results belong to the end of the loading protocol. Osteoarthritis and Cartilage 2014 22, 95-103DOI: (10.1016/j.joca.2013.10.010) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 6 Reaction force during the four simulations over time, where strain was increased to 10, 20, 30 and 40% after 8, 10, 12 and 14 h, respectively. A magnification is included of the peak values after 40% strain was applied. Osteoarthritis and Cartilage 2014 22, 95-103DOI: (10.1016/j.joca.2013.10.010) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions

Fig. 7 Maximum principal strain distributions, 2 h after 40% indentation was applied, in case no damage was allowed to develop (a), or damage developed in the fibers (b), the ground substance (c) or both (d). Osteoarthritis and Cartilage 2014 22, 95-103DOI: (10.1016/j.joca.2013.10.010) Copyright © 2013 Osteoarthritis Research Society International Terms and Conditions