Tune Shift Induced by Flat-Chamber Resistive Wall Impedance

Slides:



Advertisements
Similar presentations
1 Wake Fields and Beam Dynamics Kai Meng Hock. 2 Overview Research Interests –Wake fields Electromagnetic fields are induced by charged particles interacting.
Advertisements

Using the real lattice and an improved model for the wake field, the extraction jitter can now be calculated more accurately. Assuming an injection jitter.
CLIC TeamMAD-X Day, September 4, 2003 MAD-X for CLIC H. Braun, R. Corsini, T.d’Amico, A. Faus-Golfe, M. Korostelev, S. Redaelli, T. Risselada, D. Schulte,
March 14-15, 2007ECloud Feedback, IUCF1 Electron-Cloud Effects in Fermilab Booster K.Y. Ng Fermilab Electron-Cloud Feedback Workshop IUCF, Indiana March.
Ion instability at SuperKEKB H. Fukuma (KEK) and L. F. Wang (SLAC) ECLOUD07, 12th Apr. 2007, Daegu, Korea 1. Introduction 2. Ion trapping 3. Fast ion instability.
Helmholtz International Center for Oliver Boine-Frankenheim GSI mbH and TU Darmstadt/TEMF FAIR accelerator theory (FAIR-AT) division Helmholtz International.
Longitudinal instabilities: Single bunch longitudinal instabilities Multi bunch longitudinal instabilities Different modes Bunch lengthening Rende Steerenberg.
RF quadrupole for Landau damping Alexej Grudiev 2013/10/23 ICE section meeting.
Introduction Status of SC simulations at CERN
1 Impedance and its link to vacuum chamber geometry T.F. Günzel Vacuum systems for synchrotron light sources 12 th september 2005.
Impedance and Collective Effects in BAPS Na Wang Institute of High Energy Physics USR workshop, Huairou, China, Oct. 30, 2012.
Fast Ion Instability Studies in ILC Damping Ring Guoxing Xia DESY ILCDR07 meeting, Frascati, Mar. 5~7, 2007.
Details of space charge calculations for J-PARC rings.
Electron cloud simulations for SuperKEKB Y.Susaki,KEK-ACCL 9 Feb, 2010 KEK seminar.
Oliver Boine-Frankenheim, High Current Beam Physics Group Simulation of space charge and impedance effects Funded through the EU-design study ‘DIRACsecondary.
FCC electron cloud study plan K. Ohmi (KEK) Mar FCC electron cloud study meeting CERN.
Effect of nonlinearity on Head-Tail instability 3/18/04.
Lecture 25 - E. Wilson - 12/15/ Slide 1 Lecture 6 ACCELERATOR PHYSICS HT E. J. N. Wilson
28-May-2008Non-linear Beam Dynamics WS1 On Injection Beam Loss at the SPring-8 Storage Ring Masaru TAKAO & J. Schimizu, K. Soutome, and H. Tanaka JASRI.
Collimator wakefields - G.Kurevlev Manchester 1 Collimator wake-fields Wake fields in collimators General information Types of wake potentials.
Collimation for the Linear Collider, Daresbury.1 Adam Mercer, German Kurevlev, Roger Barlow Simulation of Halo Collimation in BDS.
INTENSITY LIMITATIONS (Space Charge and Impedance) M. Zobov.
CERN F. Ruggiero Univ. “La Sapienza”, Rome, 20–24 March 2006 Measurements, ideas, curiosities beam diagnostics and fundamental limitations to the performance.
N. Mounet and E. Métral - HB /10/20101 News on the 2D wall impedance theory N. Mounet (EPFL/ CERN) and E. Métral (CERN) Thesis supervisor : Prof.
Main activities and news from the Impedance working group.
Ion effects in low emittance rings Giovanni Rumolo Thanks to R. Nagaoka, A. Oeftiger In CLIC Workshop 3-8 February, 2014, CERN.
Frank Zimmermann, material for LTC coherent tune shift due to collimator impedance - its dependence on gap size, bunch length, chromaticity, beta function,
1 Instabilities and Phase Space Tomography in RR Alexey Burov RR Talk May
Impedance results of SLAC RC MD N. Biancacci, E.Mètral, B.Salvant, A.Valimaa OP, & Collimation Team.
INTENSITY LIMITATIONS IN THE LHC INJECTORS Discussion on Landau damping Ibon Santiago González Summer Student Session 2007.
Elias Métral, LHC collimation working group meeting, 17/07/061/26 E. Métral for the RLC team LATEST ESTIMATES OF COLLIMATOR IMPEDANCE EFFECTS u Reminder:
Three examples of application of Sussix 1)Data from simulations  sensitivity 2)Data from measurements  frequency resolution.
Coupled bunch Instabilities at ILC Damping Rings L. Wang SLAC ILC Damping Rings R&D Workshop - ILCDR06 September 26-28, 2006 Cornell University Refer to.
Elias Métral, CERN-GSI bi-lateral working meeting on Collective Effects – Coordination of Theory and Experiments, GSI, 30-31/03/06 1/15 TRANSVERSE LANDAU.
Feasibility of impedance measurements with beam N. Biancacci, N. Wang, E. Métral and B.Salvant COLUSM meeting 27/05/2016 Acknowledgements: A. Lafuente.
Geometric Impedance of LHC Collimators O. Frasciello, S. Tomassini, M. Zobov LNF-INFN Frascati, Italy With contributions and help of N.Mounet (CERN), A.Grudiev.
Collective Effect II Giuliano Franchetti, GSI CERN Accelerator – School Prague 11/9/14G. Franchetti1.
Interpretation of beam signals for high intensities
Rende Steerenberg, CERN, Switzerland
Impedance Measurement Techniques and Lessons from Light Sources
Loss of Landau damping for reactive impedance and a double RF system
Theory, observations and mitigation of dancing bunches in the Tevatron
People who attended the meeting:
T. Agoh (KEK) Introduction CSR emitted in wiggler
Instability issues in CEPC
FAIR high intensity beam dynamics
HIAF Electron Cooling System &
Head-Tail Modes for Strong Space Charge
Measurement and analysis
A. Al-khateeb, O. Chorniy, R. Hasse, V. Kornilov, O. Boine-F
TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY
Invited talk TOAC001 ( min, 21 slides)
N. Mounet, G. Rumolo and E. Métral
LHC COLLIMATOR IMPEDANCE
E. Métral, G. Rumolo, R. Tomás (CERN Switzerland), B
Simulation of trapped modes in LHC collimator
NEWS ABOUT COLLIMATOR IMPEDANCE
Recent developments of the HEADTAIL code and benchmarking
STABILITY OF THE LONGITUDINAL BUNCHED-BEAM COHERENT MODES
Tune shifts in LHC from collimators impedance
An Overview of Collective Effects in 3rd Generation Light Sources
W. Bartmann, M. Benedikt, E. Métral, D. Möhl, G. Rumolo and B. Salvant
ICFA Mini-Workshop, IHEP, 2017
Impedance analysis for collimator and beam screen in LHC and Resistive Wall Instability Liu Yu Dong.
TRANSVERSE RESISTIVE-WALL IMPEDANCE FROM ZOTTER2005’S THEORY
Elias Métral ( min, 19 slides)
STABILISING INTENSE BEAMS
Lecture 6 ACCELERATOR PHYSICS HT E. J. N. Wilson
Frank Zimmermann, Factories’03
Transverse impedance of trapped modes in LHC collimator
Presentation transcript:

Tune Shift Induced by Flat-Chamber Resistive Wall Impedance LHC Collimator Experiment in the SPS Frank Zimmermann Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 introduction collimators are largest impedance in LHC ~1-m long graphite blocks (for survival), half gap ~1.5 mm 2004 experiment aimed at validating our impedance model best measured quantity: coherent tune shift Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 prototype LHC collimator installed in the SPS (R. Assmann) Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 parameters Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 measurement data from Marek Gasior (BBQ monitor) For smallest gaps, intensity was reduced & transverse emittance increased Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 comparing measurement with classical theory applies if with Chao, Physics of Collective Instabilities in High Energy Accelerators, J. Wiley, New York 1993 c~2x10-5 for s~105 W-1m-1 and half gap b~1.5 mm →OK from 1 MHz to 1 THz classical factor 2.5 difference at small gaps data Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 A.Burov, V. Lebedev, EPAC’02 comparing with Burov-Lebedev theory includes effect of finite chamber thickness and so-called ‘inductive bypass effect’ (correct dependence at low frequency) applies if with and Burov-Lebedev factor 2 difference at small gaps Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 consideration rms beam size ~1/4 half gap → nonlinear component of the wake field could be important Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 wake potential & nonlinear deflection potential for nonlinear resistive-wall impedance between two parallel plates was derived by Piwinski (DESY 94-068, Eq. (52)) and re-written by Bane, Irwin, and Raubenheimer (NLC ZDR p. 594). 2b: full gap nonlinear kick to test particle: Piwinski formula applies if Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 time dependence of kick along the bunch is described by fR tail head Frank Zimmermann, GSI Meeting 31.03.2006

introduce new coordinates and perform 2 integrations coherent tune shift: introduce new coordinates and perform 2 integrations Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 the function G(X,Y) Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 the function G(X,Y) ) note: change of sign for large X Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 the function G(X,Y) note: divergence for Y→2b Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 variation of coherent tune shift with emittance g example parameters Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 comparing SPS measurement with tune shift expected from nonlinear wake field nonlinear wake field data 20% difference for small gaps Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 comparing SPS measurement with tune shift expected from nonlinear wake field for a 50-mm closed orbit offset at the collimator c2 of the agreement increases from 0.80 to 0.83 nonlinear wake field with 50 mm c.o. offset Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 generalized formula: combine correct frequency dependence of Burov-Lebedev with complete nonlinear on transverse coordinates from Piwinski, assuming that the two dependencies remain factorized generalized formula nearly perfect agreement measurement Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 incoherent tune shift single-particle tune nonlinearly depends on transverse coordinates & on position along the bunch t Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 incoherent tune spread b=1.0 mm b=1.5 mm Monte-Carlo evaluation of analytical formula for example parameters Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 centroid motion from multi-particle tracking with nonlinear wake field (2000 particles over 11000 turns) no collimator b=1.5 mm, no synchr.osc. b=1.0 mm, no synchr.osc. b=1.5 mm, with synchr.osc. b=1.0 mm, no synchr.osc., 1000 particles b=1.0 mm, with synchr.osc. w/o synchrotron motion Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 FFT of centroid motion for the same 6 cases no collimator b=1.5 mm, no synchr.osc. b=1.0 mm, no synchr.osc. b=1.5 mm, with synchr.osc. b=1.0 mm, no synchr.osc., 1000 particles b=1.0 mm, with synchr.osc. increased tune spread for small gaps Frank Zimmermann, GSI Meeting 31.03.2006

Frank Zimmermann, GSI Meeting 31.03.2006 conclusions nonlinear terms of resistive-wall wake field become important if aperture comparable to rms beam size generalized formula combining Burov-Lebedev (dependence on w) & Piwinski (dependence on x and y) in perfect agreement with SPS measurement for small gaps, incoherent tune spread from nonlinear wake field increases beam stability via enhanced Landau damping More details in CERN-AB-Note-2006-007 Frank Zimmermann, GSI Meeting 31.03.2006