Volume 99, Issue 8, Pages (October 2010)

Slides:



Advertisements
Similar presentations
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Advertisements

Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3  Mark J. Arcario, Emad Tajkhorshid  Biophysical.
Dejun Lin, Alan Grossfield  Biophysical Journal 
Pedro R. Magalhães, Miguel Machuqueiro, António M. Baptista 
Volume 104, Issue 3, Pages (February 2013)
Structure and Dynamics of the Membrane-Bound Form of Pf1 Coat Protein: Implications of Structural Rearrangement for Virus Assembly  Sang Ho Park, Francesca.
Olivier Fisette, Stéphane Gagné, Patrick Lagüe  Biophysical Journal 
Volume 83, Issue 3, Pages (September 2002)
Jing Han, Kristyna Pluhackova, Tsjerk A. Wassenaar, Rainer A. Böckmann 
Rosa Bartucci, Rita Guzzi, Mikael Esmann, Derek Marsh 
Volume 96, Issue 4, Pages (February 2009)
Volume 88, Issue 1, Pages (January 2005)
Mechanism and Energetics of Charybdotoxin Unbinding from a Potassium Channel from Molecular Dynamics Simulations  Po-chia Chen, Serdar Kuyucak  Biophysical.
Liqun Zhang, Susmita Borthakur, Matthias Buck  Biophysical Journal 
Prediction of Thylakoid Lipid Binding Sites on Photosystem II
Volume 113, Issue 9, Pages (November 2017)
Jefferson D. Knight, Joseph J. Falke  Biophysical Journal 
How Does a Voltage Sensor Interact with a Lipid Bilayer
Volume 102, Issue 3, Pages (February 2012)
Volume 100, Issue 4, Pages (February 2011)
Influence of Protein Scaffold on Side-Chain Transfer Free Energies
Volume 112, Issue 7, Pages (April 2017)
J.L. Robertson, L.G. Palmer, B. Roux  Biophysical Journal 
Janin Glaenzer, Martin F. Peter, Gavin H. Thomas, Gregor Hagelueken 
Volume 96, Issue 7, Pages (April 2009)
Hyunbum Jang, Buyong Ma, Thomas B. Woolf, Ruth Nussinov 
Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
Computational Modeling Reveals that Signaling Lipids Modulate the Orientation of K- Ras4A at the Membrane Reflecting Protein Topology  Zhen-Lu Li, Matthias.
Till Siebenmorgen, Martin Zacharias  Biophysical Journal 
Volume 96, Issue 7, Pages (April 2009)
Volume 103, Issue 8, Pages (October 2012)
Volume 99, Issue 6, Pages (September 2010)
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Volume 102, Issue 9, Pages (May 2012)
Volume 95, Issue 9, Pages (November 2008)
Sundeep S. Deol, Peter J. Bond, Carmen Domene, Mark S.P. Sansom 
Dissecting DNA-Histone Interactions in the Nucleosome by Molecular Dynamics Simulations of DNA Unwrapping  Ramona Ettig, Nick Kepper, Rene Stehr, Gero.
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter- nucleosome Interaction  Ruihan Zhang, Jochen Erler, Jörg Langowski  Biophysical.
Cholesterol Modulates the Dimer Interface of the β2-Adrenergic Receptor via Cholesterol Occupancy Sites  Xavier Prasanna, Amitabha Chattopadhyay, Durba.
A Perspective on Mechanisms of Protein Tetramer Formation
Shelly Tzlil, Diana Murray, Avinoam Ben-Shaul  Biophysical Journal 
Kristen E. Norman, Hugh Nymeyer  Biophysical Journal 
Thomas H. Schmidt, Yahya Homsi, Thorsten Lang  Biophysical Journal 
Volume 111, Issue 1, Pages (July 2016)
Volume 112, Issue 12, Pages (June 2017)
M. Müller, K. Katsov, M. Schick  Biophysical Journal 
Blocking of Single α-Hemolysin Pore by Rhodamine Derivatives
Volume 21, Issue 10, Pages (October 2013)
Ion-Induced Defect Permeation of Lipid Membranes
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Agnes Noy, Anthony Maxwell, Sarah A. Harris  Biophysical Journal 
Volume 74, Issue 1, Pages (January 1998)
Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers  Semen Yesylevskyy, Siewert-Jan.
Anisotropic Membrane Curvature Sensing by Amphipathic Peptides
Membrane Insertion of a Voltage Sensor Helix
Matthieu Chavent, Elena Seiradake, E. Yvonne Jones, Mark S.P. Sansom 
Volume 114, Issue 2, Pages (January 2018)
Modeling Membrane Deformations and Lipid Demixing upon Protein-Membrane Interaction: The BAR Dimer Adsorption  George Khelashvili, Daniel Harries, Harel.
Chze Ling Wee, David Gavaghan, Mark S.P. Sansom  Biophysical Journal 
Small-Angle X-Ray Scattering of the Cholesterol Incorporation into Human ApoA1- POPC Discoidal Particles  Søren Roi Midtgaard, Martin Cramer Pedersen,
Interactions of the Auxilin-1 PTEN-like Domain with Model Membranes Result in Nanoclustering of Phosphatidyl Inositol Phosphates  Antreas C. Kalli, Gareth.
Structure and Response to Flow of the Glycocalyx Layer
Jochen Zimmer, Declan A. Doyle, J. Günter Grossmann 
Distribution of Halothane in a Dipalmitoylphosphatidylcholine Bilayer from Molecular Dynamics Calculations  Laure Koubi, Mounir Tarek, Michael L. Klein,
Volume 85, Issue 3, Pages (September 2003)
Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor  Yoonji Lee, Songmi Kim, Sun Choi, Changbong Hyeon 
Volume 111, Issue 9, Pages (November 2016)
The NorM MATE Transporter from N
Evolution of Specificity in Protein-Protein Interactions
Presentation transcript:

Volume 99, Issue 8, Pages 2516-2524 (October 2010) Electrostatic Interactions and Binding Orientation of HIV-1 Matrix Studied by Neutron Reflectivity  Hirsh Nanda, Siddhartha A.K. Datta, Frank Heinrich, Mathias Lösche, Alan Rein, Susan Krueger, Joseph E. Curtis  Biophysical Journal  Volume 99, Issue 8, Pages 2516-2524 (October 2010) DOI: 10.1016/j.bpj.2010.07.062 Copyright © 2010 Biophysical Society Terms and Conditions

Figure 1 NR of a tBLM with increasing concentrations of −myrMA in H2O-based aqueous buffer. The reflection spectra are normalized to the Fresnel reflectivity (i.e., the reflectivity of a neat Si-buffer interface without interfacial roughness) to emphasize the interference patterns due to the interfacial structure. The bottom plot shows the error-weighted residuals of the tBLM reflectivities with protein to the reflectivity without protein. An increase in MA concentration leads to an approximately linear increase of the residuals. Biophysical Journal 2010 99, 2516-2524DOI: (10.1016/j.bpj.2010.07.062) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 2 NR and SLD profiles derived from different protein models compared for the data set for 10 μmol/L −myrMA in H2O-based buffer. (A) Best-fit reflectivity curves using the one-box, free-form, and NMR-based protein models (without rotational optimization). The bottom panel shows the error-weighted residuals of these models to the experimental data. (B) Resulting SLD profiles. The free-form profiles for the neat tBLM (gray) and bound MA domain (blue) are given with line widths representing 95.4% confidence intervals determined from the Monte Carlo resampling of the data. Best-fit profiles for one-box (yellow) and NMR-based (red) protein models are also shown. The illustration provides a molecular interpretation of the SLD profiles. Biophysical Journal 2010 99, 2516-2524DOI: (10.1016/j.bpj.2010.07.062) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 3 Determination from Monte Carlo resampling of the most probable orientations of membrane-bound −myrMA using the NMR structures to model protein contributions to the SLD profile. (A) Confidence intervals for the Euler angles (ϑ,ϕ) that define protein orientation. The colored heat plot is linearly scaled to the probability density of Monte Carlo-resampled fits that resulted in a particular orientation (where red represents the highest density and violet indicates the lowest). The 68.2% contour shows that a majority of fits fall within a narrow region localized around (ϑ,ϕ) = (20°,110°). (B) 3D perspectives of the probability density shown from the point of view facing the x,z-plane (left) and y,z-plane (right). (C) Projections of protein orientations onto the x,z plane (left) and y,z-plane (right). The membrane surface (not shown) is at the x,y plane. Protein structures are color-coded to match the contour. Biophysical Journal 2010 99, 2516-2524DOI: (10.1016/j.bpj.2010.07.062) Copyright © 2010 Biophysical Society Terms and Conditions

Figure 4 Penetration of the −myrMA domain into the lipid bilayer. The SLD profile of the protein is observed to overlap that of the bilayer by 4.8 ± 1.7 Å, such that MA makes molecular contacts with the tBLM only in the lipid headgroup region. Left axis: Overlap between the headgroup (solid line) and protein (dotted line) SLD profiles for the orientation corresponding to (ϑ,ϕ) = (20°,110°). Right axis: Distributions along z of the C-α atoms of charged amino acid side chains near the interface. The amino acid residues are color-coded according to their proximity to the membrane interface (see text). The frequencies of occurrence in Monte Carlo-resampled fits at a certain distance, z, from the bilayer center are plotted for these groups. (Inset) Molecular model of −myrMA in the (ϑ,ϕ) = (20°,110°) orientation at the membrane surface, with charged residues highlighted in the same color code used for the C-α distributions. Biophysical Journal 2010 99, 2516-2524DOI: (10.1016/j.bpj.2010.07.062) Copyright © 2010 Biophysical Society Terms and Conditions