Ampere’s Circuital Law

Slides:



Advertisements
Similar presentations
Straight line currents
Advertisements

Gauss’ Law and Applications
Magnetic field.
Torque on a Current Loop, 2
Sources of the Magnetic Field
Chapter 30 Sources of the magnetic field
President UniversityErwin SitompulEEM 9/1 Dr.-Ing. Erwin Sitompul President University Lecture 9 Engineering Electromagnetics
Chapter 28 Sources of Magnetic Field
Phy 213: General Physics III Chapter 29: Magnetic Fields to Currents Lecture Notes.
Physics 121 Practice Problem Solutions 10 Magnetic Fields from Currents (Biot-Savart and Ampere’s Law) Contents: 121P10 - 1P, 5P, 8P, 10P, 19P, 29P,
Sources of Magnetic Field Chapter 28 Study the magnetic field generated by a moving charge Consider magnetic field of a current-carrying conductor Examine.
Magnetostatics – Surface Current Density
Source of Magnetic Field Ch. 28
B field of current element (sec. 28.2) Law of Biot and Savart B field of current-carrying wire (sec. 28.3) Force between conductors(sec. 28.4) B field.
AP Physics C Chapter 28.  s1/MovingCharge/MovingCharge.html s1/MovingCharge/MovingCharge.html.
Gauss’s Law.
Sources of Magnetic Field
Ampere’s Law AP Physics C Mrs. Coyle Andre Ampere.
Chapter 29 Electromagnetic Induction and Faraday’s Law HW#9: Chapter 28: Pb.18, Pb. 31, Pb.40 Chapter 29:Pb.3, Pb 30, Pb. 48 Due Wednesday 22.
The Magnetic Field of a Solenoid AP Physics C Montwood High School R. Casao.
AP Physics C Montwood High School R. Casao
a b c Gauss’ Law … made easy To solve the above equation for E, you have to be able to CHOOSE A CLOSED SURFACE such that the integral is TRIVIAL. (1)
MAGNETOSTATIC FIELD (STEADY MAGNETIC)
Sources of the Magnetic Field
Chapter 20 The Production and Properties of Magnetic Fields.
Chapter 7. Steady magnetic field 1 EMLAB. B (Magnetic flux density), H (Magnetic field) Magnetic field is generated by moving charges, i.e. current. If.
President UniversityErwin SitompulEEM 12/1 Lecture 12 Engineering Electromagnetics Dr.-Ing. Erwin Sitompul President University
W09D1: Sources of Magnetic Fields: Ampere’s Law
Chapter 21 Gauss’s Law. Electric Field Lines Electric field lines (convenient for visualizing electric field patterns) – lines pointing in the direction.
Monday, Mar. 27, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #16 Monday, Mar. 27, 2006 Dr. Jaehoon Yu Sources of Magnetic.
ENE 325 Electromagnetic Fields and Waves
30.5 Magnetic flux  30. Fig 30-CO, p.927
President UniversityErwin SitompulEEM 10/1 Dr.-Ing. Erwin Sitompul President University Lecture 10 Engineering Electromagnetics
CHECKPOINT: What is the current direction in this loop
Copyright © 2009 Pearson Education, Inc. Ampère’s Law.
Chapter 22 Gauss’s Law Chapter 22 opener. Gauss’s law is an elegant relation between electric charge and electric field. It is more general than Coulomb’s.
Chapter 3 Electric Flux Density, Gauss’s Law, and Divergence Electric Flux Density About 1837, the Director of the Royal Society in London, Michael Faraday,
Magnetic Fields Due to Currents
CHAPTER OUTLINE 30.1 The Biot–Savart Law 30.2 The Magnetic Force Between Two Parallel Conductors 30.3 Ampère’s Law 30.4 The Magnetic Field of a Solenoid.
Thursday March 31, PHYS Dr. Andrew Brandt PHYS 1444 – Section 02 Lecture #16 Thursday Mar 31, 2011 Dr. Andrew Brandt HW7 Ch 27 is due Fri.
Sources of the Magnetic Field March 23, 2009 Note – These slides will be updated for the actual presentation.
1 Lecture 3 Gauss’s Law Ch. 23 Physlet ch9_2_gauss/default.html Topics –Electric Flux –Gauss’
President UniversityErwin SitompulEEM 4/1 Dr.-Ing. Erwin Sitompul President University Lecture 4 Engineering Electromagnetics
22.7 Source of magnetic field due to current
ENE 325 Electromagnetic Fields and Waves Lecture 4 Magnetostatics.
Chapter 26 Sources of Magnetic Field. Biot-Savart Law (P 614 ) 2 Magnetic equivalent to C’s law by Biot & Savart . P. P Magnetic field due to an infinitesimal.
Lecture 28: Currents and Magnetic Field: I
President UniversityErwin SitompulEEM 9/1 Lecture 9 Engineering Electromagnetics Dr.-Ing. Erwin Sitompul President University
Magnetic Fields due to Currents Chapter 29. The magnitude of the field dB produced at point P at distance r by a current-length element ds turns out to.
The Biot-Savart Law. Biot and Savart recognized that a conductor carrying a steady current produces a force on a magnet. Biot and Savart produced an equation.
Chapter 28 Sources of Magnetic Field Ampère’s Law Example 28-6: Field inside and outside a wire. A long straight cylindrical wire conductor of radius.
LINE,SURFACE & VOLUME CHARGES
Magnetic Field Sources
BABARIA INSTITUTE OF TECHNOLOGY ELECTRONICS & COMMUNICATION DEPARTMENT
The Steady Magnetic Field
Ampère’s Law Figure Arbitrary path enclosing a current, for Ampère’s law. The path is broken down into segments of equal length Δl.
Chapter 8. Steady-state magnetic field
Engineering Electromagnetics
PHYS 1444 – Section 501 Lecture #16
Chapter 8 The Steady Magnetic Field Stokes’ Theorem Previously, from Ampere’s circuital law, we derive one of Maxwell’s equations, ∇×H = J. This equation.
The Steady Magnetic Field
Chapter 3 Magnetostatics
Ampère’s Law Figure Arbitrary path enclosing a current, for Ampère’s law. The path is broken down into segments of equal length Δl.
Lecture 9 Magnetic Fields due to Currents Ch. 30
CHECKPOINT: What is the current direction in this loop
Dr. Cherdsak Bootjomchai (Dr.Per)
ENE/EIE 325 Electromagnetic Fields and Waves
Electric Flux Density, Gauss’s Law, and Divergence
Chapter 28 Sources of Magnetic Field
Presentation transcript:

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law In solving electrostatic problems, whenever a high degree of symmetry is present, we found that they could be solved much more easily by using Gauss’s law compared to Coulomb’s law. Again, an analogous procedure exists in magnetic field. Here, the law that helps solving problems more easily is known as Ampere’s circuital law. The derivation of this law will waits until several subsection ahead. For the present we accept Ampere’s circuital law as another law capable of experimental proof. Ampere’s circuital law states that the line integral of magnetic field intensity H about any closed path is exactly equal to the direct current enclosed by that path,

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law The line integral of H about the closed path a and b is equal to I The integral around path c is less than I. The application of Ampere’s circuital law involves finding the total current enclosed by a closed path.

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law Let us again find the magnetic field intensity produced by an infinite long filament carrying a current I. The filament lies on the z axis in free space, flowing to az direction. We choose a convenient path to any section of which H is either perpendicular or tangential and along which the magnitude H is constant. The path must be a circle of radius ρ, and Ampere’s circuital law can be written as

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law As a second example, consider an infinitely long coaxial transmission line, carrying a uniformly distributed total current I in the center conductor and –I in the outer conductor. A circular path of radius ρ, where ρ is larger than the radius of the inner conductor a but less than the inner radius of the outer conductor b, leads immediately to If ρ < a, the current enclosed is Resulting

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law If the radius ρ is larger than the outer radius of the outer conductor, no current is enclosed and Finally, if the path lies within the outer conductor, we have ρ components cancel, z component is zero. Only φ component of H does exist.

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law The magnetic-field-strength variation with radius is shown below for a coaxial cable in which b = 3a, c = 4a. It should be noted that the magnetic field intensity H is continuous at all the conductor boundaries  The value of Hφ does not show sudden jumps. Outside the coaxial cable, a complete cancellation of magnetic field occurs. Such coaxial cable would not produce any noticeable effect to the surroundings (“shielding”)

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law As final example, consider a sheet of current flowing in the positive y direction and located in the z = 0 plane, with uniform surface current density K = Ky ay. Due to symmetry, H cannot vary with x and y. If the sheet is subdivided into a number of filaments, it is evident that no filament can produce an Hy component. Moreover, the Biot-Savart law shows that the contributions to Hz produced by a symmetrically located pair of filaments cancel each other.  Hz is zero also. Thus, only Hx component is present.

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law We therefore choose the path 1-1’-2’-2-1 composed of straight- line segments which are either parallel or perpendicular to Hx and enclose the current sheet. Ampere's circuital law gives If we choose a new path 3-3’-2’-2’3, the same current is enclosed, giving and therefore

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law Because of the symmetry, then, the magnetic field intensity on one side of the current sheet is the negative of that on the other side. Above the sheet while below it Letting aN be a unit vector normal (outward) to the current sheet, this result may be written in a form correct for all z as

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law If a second sheet of current flowing in the opposite direction, K = –Ky ay, is placed at z = h, then the field in the region between the current sheets is and is zero elsewhere

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law The difficult part of the application of Ampere’s circuital law is the determination of the components of the field which are present. The surest method is the logical application of the Biot-Savart law and a knowledge of the magnetic fields of simple form (line, sheet of current, “volume of current”). Solenoid Toroid

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law For an infinitely long solenoid of radius a and uniform current density Ka aφ, the result is If the solenoid has a finite length d and consists of N closely wound turns of a filament that carries a current I, then

Ampere’s Circuital Law Chapter 8 The Steady Magnetic Field Ampere’s Circuital Law For a toroid with ideal case For the N-turn toroid, we have the good approximations

Chapter 8 The Steady Magnetic Field End of the Lecture