The MOA Project 2013 Observing Season

Slides:



Advertisements
Similar presentations
The Ongoing Importance of Followup Observations Jennifer Yee.
Advertisements

Twenty Years of Microlensing Observations From the Andrzej Udalski Warsaw University Observatory Perspective.
EUCLID : From Dark Energy to Earth mass planets and beyond Jean-Philippe Beaulieu Institut dAstrophysique de Paris Dave Bennett University of Notre Dame.
Microlensing Surveys for Finding Planets Kem Cook LLNL/NOAO With thanks to Dave Bennett for most of these slides.
False positives in the Corot transiting planet search Goal: estimate the amount of ground-based observations necessary for the Corot ground-based follow-up.
General Astrophysics with TPF-C David Spergel Princeton.
P.Tisserand Rencontres du Vietnam Final results on galactic dark matter from the EROS-2 microlensing survey ~ images processed - 55 million.
The Smallest Planet Orbiting the Smallest Star David Bennett University of Notre Dame for the MOA & OGLE Collaborations mobile phone:
18 th Conference on Gravitational Microlensing Microlensing Planetary and Binary Statistics from Generation-II OGLE-MOA-Wise Microlensing Planetary.
Astrophysical applications of gravitational microlensing By Shude Mao Ziang Yan Department of Physics,Tsinghua.
Arnaud Cassan Optical and Infrared Wide-Field Astronomy in Antarctica ARI / ZAH Heidelberg IAP, 14 – 16 June 2006 Microlensing search for extra-solar planets.
Pi of the Sky – preparation for GW Advance Detector Era Adam Zadrożny Wilga 2014.
PLANET/Robonet : searching for low mass extra solar planets via microlensing. Jean-Philippe Beaulieu, Institut d’Astrophysique de Paris.
Other Science from Microlensing Surveys I or Microlenses as Stellar Probes By Jonathan Devor.
The Gravitational Microlensing Planet Search Technique from Space David Bennett & Sun Hong Rhie (University of Notre Dame) Gravitational Lensing Time Series.
Ge/Ay133 What (exo)-planetary science can be done with microlensing?
30 inch (0.76 m) mirror Lick Observatory, Mt. Hamilton, near San Jose, CA Funded by NSF, the Sylvia & Jim Katzman Foundation, AutoScope Corp., Sun Microsystems,
Planetary Microlensing for dummies Nick Cowan April 2006.
The Galactic Exoplanet Survey Telescope (GEST) D. Bennett (Notre Dame), J. Bally (Colorado), I. Bond (Auckland), E. Cheng (GSFC), K. Cook (LLNL), D. Deming,
Detection of Terrestrial Extra-Solar Planets via Gravitational Microlensing David Bennett University of Notre Dame.
Exploring Black Hole Demographics with Microlensing
OB390 and the new microlensing planets Christian Coutures Eso Santiago September 2006.
Searching for low mass extra solar planets via microlensing. Jean-Philippe Beaulieu, Virginie Batista, Arnaud Cassan, Christian Coutures, Jadzia Donatowicz,
DRM1 & Exoplanet Microlensing David Bennett University of Notre Dame.
RoboNet-II Robotic operations, System outline and data processing Yiannis Tsapras, 2008, LCOGT, Santa Barbara.
Searches for exoplanets
MOA-II Microlensing Survey Takahiro Sumi (Nagoya University) the MOA collaboration Abe,F; Bennett,P.D;Bond, I. A.;Fukui,A;Furusawa,K; Hearnshaw, J. B.;Itow,Y;
OGLE-2003-BLG-235/MOA-2003-BLG-53: A Definitive Planetary Microlensing Event David Bennett University of Notre Dame.
The Microlensing Event Rate and Optical Depth Toward the Galactic Bulge from MOA-II Takahiro Sumi (Osaka University)
Studying cool planets around distant low-mass stars Planet detection by gravitational microlensing Martin Dominik Royal Society University Research Fellow.
Measuring Parameters for Microlensing Planetary Systems. Scott Gaudi Matthew Penny (OSU)
Microlensing Planets from the Ground and Space David Bennett University of Notre Dame.
Stellar variability monitoring in open clusters with mini-SONG X.B. Zhang National Astronomical Observatories, Chinese Academy of Sciences.
More Pixels for WFIRST ? David Bennett University of Notre Dame.
A Search for Earth-size Planets Borucki – Page 1 Roger Hunter (Ames Research Center) & Kepler Team March 26, 2010.
Microlensing, « blue dot team » Jean-Philippe Beaulieu Collaborators/interested by a microlensing program on EUCLID IAP : Batista, Marquette Observatoire.
Upgrade plan of the MOA 1.8-m telescope F. Abe MOA collaboration 19 Jan. 2009, 13th Microlensing Paris.
星網計劃 The NETS Project: The NEtwork of Transit Survey 江瑛貴 Ing-Guey Jiang National Tsing-Hua Univ., Taiwan.
Searching for Frozen super Earth mass planet via microlensing. Jean-Philippe Beaulieu, Institut d’Astrophysique de Paris PLANET/ROBONET collaboration HOLMES.
The mass of the free-floating planet MOA-2011-BLG-274L Philip Yock 18 th International Conference on Gravitational Lensing LCOGT, Santa Barbara January.
Towards Earth mass planets via microlensing. Jean-Philippe Beaulieu, et al. HOLMES & PLANET Collaboration Institut d’Astrophysique de Paris Europlanet.
16th Microlensing Season of the Optical Gravitational Lensing Experiment A. Udalski Warsaw University Observatory.
EXTRASOLAR PLANETS FROM DOME -C Jean-Philippe Beaulieu Institut d’Astrophysique de Paris Marc Swain JPL, Pasadena Detecting extrasolar planets Transit.
Korean Astronomical Society Meeting, April 22, 2005 Scott Gaudi Harvard-Smithsonian Center for Astrophysics & Topics in the Search for Extrasolar Planets.
Extrasolar planets Emre Işık (MPS, Lindau) S 3 lecture Origin of solar systems 14 February 2006.
SOCHIAS Santiago, January Sergio Hoyer Miranda Departamento de Astronomía Universidad de Chile 1.
Microlensing planet surveys: the second generation Dan Maoz Tel-Aviv University with Yossi Shvartzvald, OGLE, MOA, microFUN.
Gravitational Lensing: How to See the Dark J. E. Bjorkman University of Toledo Department of Physics & Astronomy.
Chinese- international collaboration solved the central question: ”How common are planets like the Earth”
The WFIRST Microlensing Exoplanet Survey: Figure of Merit David Bennett University of Notre Dame WFIRST.
Studying cool planets around distant low-mass stars Planet detection by gravitational microlensing Martin Dominik Royal Society University Research Fellow.
A Search For New Planets Matthew Livas Science, Discovery, and the Universe Computer Science Introduction My capstone was to observe.
Occultation Studies of the Outer Solar System B. Scott Gaudi (Harvard-Smithsonian Center for Astrophysics)
20 th Microlensing Workshop Spitzer Microlens Detection of a Massive Remnant in a Well-separated Binary Yossi Shvartzvald Jet Propulsion Laboratory, California.
Cool planet mass function and a fly’s-eye ‘evryscope’ at Antarctica Philip Yock, Auckland, New Zealand 20th Microlensing Workshop Institut d'Astrophysique.
MOA-II microlensing exoplanet survey
EXPLORE/OC: Photometry Results for the Open Cluster NGC 2660 K. von Braun (Carnegie/DTM), B. L. Lee (Toronto), S. Seager (Carnegie/DTM), H. K. C. Yee (Toronto),
Astrophysical applications of gravitational microlensing(II) By Shude Mao Ziang Yan Department of Physics,Tsinghua.
Constraining the masses of OGLE microlenses with astrometric microlensing Noé Kains (STScI) with Kailash Sahu, Jay Anderson, Andrzej Udalski, Annalisa.
The Kepler Mission S. R. Kulkarni.
23 Years of Gravitational Microlensing by the Japan/NZ/USA MOA Project
An Extreme Magnification Event with a Strong Sensitivity to Planets
VBBinaryLensing A public code for binary microlensing computation
Observing the parallax effect due to gravitational lensing with OSIRIS
Interpretation of two microlensing events
Microlensing with CCDs
What (exo)-planetary science can be done with microlensing?
EXPLORING FREE FLOATING PLANETS WITH MICROLENSING
A Closer Look at Microlensing
Unpublished Planetary Microlensing Events
Presentation transcript:

The MOA Project 2013 Observing Season David Bennett University of Notre Dame

MOA-II 1.8m telescope (New Zealand/Mt. John Observatory at NZ, 44S ) Mirror : 1.8m CCD : 8k x 10k pix. FOV : 2.2 deg.2 - Allows high cadence monitoring

MOA Observing Strategy 50 deg.2(20Mstars) 2.2 deg.2 per field 1obs./night.(>MJup) 1obs./95min.(Mjup) 1obs./47min. (Mnep) 1obs./15min. (M) G.C. Real time photometry and alerts 668 microlensing events (2013) https://it019909.massey.ac.nz/moa/

MOA-2009-BLG-266 parallax uncertainty is asymmetric

Summary of Planetary Results 10 events with planetary signals in MOA data MOA-2013-BLG-040/OGLE-2013-BLG-0077* MOA-2013-BLG-093* MOA-2013-BLG-220 MOA-2013-BLG-605/OGLE-2013-BLG-1835 OGLE-2013-BLG-0132/MOA-2013-BLG-148* OGLE-2013-BLG-0341/MOA-2013-BLG-26 OGLE-2013-BLG-1125/MOA-2013-BLG-584 OGLE-2013-BLG-1271/MOA-2013-BLG-579* OGLE-2013-BLG-1721/MOA-2013-BLG-618 OGLE-2013-BLG-1761/MOA-2013-BLG-651 Many anomalies not detected in real time (*) Plan to fix this in 2014

MOA-2013-BLG-040/OGLE-0077 MOA+OGLE survey discovery - Not alerted in real time q = 3×10-4 t* poorly constrained

MOA-2013-BLG-093 MOA+OGLE survey discovery - No real-time alert q = 3×10-3

MOA-2013-BLG-220 High mag event, alerted by MOA, covered by uFUN, Robonet, MOA and OGLE q = 3×10-3

MOA-2013-BLG-605/OGLE-1835 Planetary anomaly alerted as single lens event in real time – understood as planetary event when it began brightening again. q = 3×10-4 s = 2.3 likely parallax signal

OGLE-2013-BLG-0132/MOA-148 1st planetary peak missed by MOA real-time analysis. Identified by Han with OGLE data from the next night, but not follow-up data obtained q = 5×10-4 s = 1.14 likely parallax signal

OGLE-2013-BLG-0341/MOA-260 Identified by Gould & Han as likely planetary event before high-mag – binary star system with planet. Gould et al. paper in preparation planet has low mass 2-3 Earth-masses.

OGLE-2013-BLG-1125/MOA-584 Alerted in real time by MOA, but toward the end of the planetary anomaly. But, peak observed by Robonet, μFUN. q = 2×10-3 s = 1.05 strong parallax

OGLE-2013-BLG-1271/MOA-579 MOA+OGLE survey discovery. Not identified in real time Strong cusp crossing in MOA data q = 4×10-3 s = 1.45

OGLE-2013-BLG-1721/MOA-618 Planetary signal in OGLE data identified by Han “Manual alert” used to produce MOA light curve q = 1.3 ×10-3 s = 0.96

OGLE-2013-BLG-1761/MOA-651 Anomaly identified in real time by MOA, but no follow-up data. (Late in season – Sep. 10) q = 3×10-3 s = 0.88 or q = 6×10-3 s = 0.96

High Magnification Alerts 26 high mag alerts based in part on MOA data MOA-2013-BLG-063 OGLE-2013-BLG-1066/MOA-2013-BLG-471 MOA-2013-BLG-126 OGLE-2013-BLG-1114/MOA-2013-BLG-485 MOA-2013-BLG-145/146 MOA-2013-BLG-498 MOA-2013-BLG-220 OGLE-2013-BLG-1177/MOA-2013-BLG-505 MOA-2013-BLG-246 MOA-2013-BLG-524 OGLE-2013-BLG-0341/MOA-2013-BLG-260 MOA-2013-BLG-557 MOA-2013-BLG-067 OGLE-2013-BLG-1259/MOA-2013-BLG-528 MOA-2013-BLG-299/OGLE-2013-BLG-0640 OGLE-2013-BLG-0911/MOA-2013-BLG-551 OGLE-2013-BLG-0674/MOA-2013-BLG-346 MOA-2013-BLG-611 OGLE-2013-BLG-0488/MOA-2013-BLG-355 MOA-2013-BLG-650 OGLE-2013-BLG-0446/MOA-2013-BLG-306 OGLE-2013-BLG-1868/MOA-2013-BLG-655 OGLE-2013-BLG-0860/MOA-2013-BLG-411 OGLE-2013-BLG-0798/MOA-2013-BLG-432 Likely planetary events in red (not all events checked) MOA-2013-BLG-456 MOA-2013-BLG-460 MOA real-time photometry means that most high mag alerts have most recent data from MOA 7 other high mag alerts with OGLE data only (according to my possibly incomplete email review)

High Mag Alerts MOA-2013-BLG-063 MOA-2013-BLG-220 planet!

High Mag Alerts OGLE-2013-BLG-0341 (planet) MOA-2013-BLG-299/OGLE-0640

High Mag Alerts OGLE-2013-BLG-0674/MOA-346 OGLE-2013-BLG-0446/MOA-306 planet

High Mag Alerts OGLE-2013-BLG-0860/MOA-411

High Mag Alerts OGLE-2013-BLG-0798/MOA-432 MOA-2013-BLG-460

High Mag Alerts OGLE-2013-BLG-1066/MOA-471 OGLE-2013-BLG-1114/MOA-485

High Mag Alerts MOA-2013-BLG-498 MOA-2013-BLG-557

High Mag Alerts OGLE-2013-BLG-1259/MOA-528 OGLE-2013-BLG-0911/MOA-511 possible planet

High Mag Alerts MOA-2013-BLG-611 OGLE-2013-BLG-1868/MOA-655

Improvements Planned for 2014 Problems: missed planetary anomaly alerts likely missed short, “rogue planet” events Develop remote anomaly alert capability Reduce false alarms in real-time event alert system many false alarms are due to image artifacts that can be removed Closer cooperation with LCOGT? – particularly SAAO site which can immediately follow possible anomalies seen by MOA Arrange for planetary signals and good weather in the middle of the season when it is easier to collect data