Volume 26, Issue 3, Pages (September 2014)

Slides:



Advertisements
Similar presentations
The National CML Society 2012 CML UPDATE “What’s New? What’s Coming?” Luke Akard MD Co-Director Indiana Blood and Marrow Transplantation Program.
Advertisements

Chronic myelogenous leukemia Uncommon disease Highly lethal when ineffectively Rxd Most pts are in their 50s+60s The molecular understanding of this disease.
Pratistha Ranjitkar, Amanda M. Brock, Dustin J. Maly 
Cortes JE et al. Proc ASCO 2010;Abstract 6502.
Volume 7, Issue 2, Pages (February 2005)
Breaking Down Resistance
Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function  Carla A. Theimer, Craig A. Blois, Juli.
Minimal cross-intolerance with nilotinib in patients with chronic myeloid leukemia in chronic or accelerated phase who are intolerant to imatinib by Jorge.
Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study by Neil P. Shah, François.
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 11, Issue 3, Pages (March 2007)
Arvin C. Dar, Michael S. Lopez, Kevan M. Shokat  Chemistry & Biology 
Structure of the Human Telomerase RNA Pseudoknot Reveals Conserved Tertiary Interactions Essential for Function  Carla A. Theimer, Craig A. Blois, Juli.
The Binding of Antibiotics in OmpF Porin
Volume 14, Issue 12, Pages (December 2006)
Volume 21, Issue 9, Pages (September 2013)
Volume 63, Issue 6, Pages (September 2016)
Volume 2, Issue 2, Pages (August 2002)
Volume 24, Issue 12, Pages (December 2016)
Yvonne Groemping, Karine Lapouge, Stephen J. Smerdon, Katrin Rittinger 
Volume 34, Issue 4, Pages (May 2009)
Volume 24, Issue 8, Pages (August 2016)
Volume 23, Issue 12, Pages (December 2015)
Volume 22, Issue 1, Pages (January 2014)
Volume 125, Issue 4, Pages (May 2006)
Volume 36, Issue 4, Pages (November 2009)
Structure of the Endonuclease Domain of MutL: Unlicensed to Cut
Volume 28, Issue 4, Pages (November 2007)
A Model for How Ribosomal Release Factors Induce Peptidyl-tRNA Cleavage in Termination of Protein Synthesis  Stefan Trobro, Johan Åqvist  Molecular Cell 
Choel Kim, Cecilia Y. Cheng, S. Adrian Saldanha, Susan S. Taylor  Cell 
Volume 13, Issue 9, Pages (December 2015)
Patients with Philadelphia-Positive Leukemia with BCR-ABL Kinase Mutations before Allogeneic Transplantation Predominantly Relapse with the Same Mutation 
Volume 15, Issue 3, Pages (March 2007)
Ross Alexander Robinson, Xin Lu, Edith Yvonne Jones, Christian Siebold 
Volume 20, Issue 6, Pages (December 2011)
Volume 20, Issue 1, Pages 9-19 (October 2005)
A Conformational Switch in the CRIB-PDZ Module of Par-6
Volume 124, Issue 5, Pages (March 2006)
Daniel Hoersch, Tanja Kortemme  Structure 
Volume 19, Issue 8, Pages (August 2012)
The Structure of the Tiam1 PDZ Domain/ Phospho-Syndecan1 Complex Reveals a Ligand Conformation that Modulates Protein Dynamics  Xu Liu, Tyson R. Shepherd,
Volume 56, Issue 6, Pages (December 2007)
Volume 66, Issue 5, Pages e3 (June 2017)
Volume 23, Issue 4, Pages (April 2015)
Volume 22, Issue 4, Pages (April 2014)
Insights into Oncogenic Mutations of Plexin-B1 Based on the Solution Structure of the Rho GTPase Binding Domain  Yufeng Tong, Prasanta K. Hota, Mehdi.
Volume 16, Issue 5, Pages (November 2009)
Molecular Basis of Drug Resistance in Aurora Kinases
A General Framework for Inhibitor Resistance in Protein Kinases
Volume 23, Issue 6, Pages (June 2015)
Volume 23, Issue 9, Pages (September 2015)
Volume 15, Issue 12, Pages (December 2007)
Volume 14, Issue 4, Pages (April 2006)
Mohammad Azam, Robert R. Latek, George Q. Daley  Cell 
Comparison of Frequency and Sensitivity of BCR-ABL1 Kinase Domain Mutations in Asian and White Patients With Imatinib-resistant Chronic–Phase Chronic.
Volume 52, Issue 3, Pages (November 2013)
Volume 114, Issue 1, Pages (January 2018)
Pratistha Ranjitkar, Amanda M. Brock, Dustin J. Maly 
Crystal Structures of the Thi-Box Riboswitch Bound to Thiamine Pyrophosphate Analogs Reveal Adaptive RNA-Small Molecule Recognition  Thomas E. Edwards,
Structural Basis for the Major Role of O-Phosphoseryl-tRNA Kinase in the UGA-Specific Encoding of Selenocysteine  Shiho Chiba, Yuzuru Itoh, Shun-ichi.
Volume 11, Issue 1, Pages 1-12 (April 2015)
Arvin C. Dar, Michael S. Lopez, Kevan M. Shokat  Chemistry & Biology 
Suboptimal Response to or Failure of Imatinib Treatment for Chronic Myeloid Leukemia: What Is the Optimal Strategy?  Elias Jabbour, MD, Jorge E. Cortes,
Volume 153, Issue 7, Pages (June 2013)
Volume 27, Issue 5, Pages (September 2007)
Peter König, Rafael Giraldo, Lynda Chapman, Daniela Rhodes  Cell 
Volume 23, Issue 9, Pages (September 2015)
Guilty as charged Cancer Cell
Volume 127, Issue 7, Pages (December 2006)
Volume 7, Issue 2, Pages R19-R23 (February 1999)
Presentation transcript:

Volume 26, Issue 3, Pages 428-442 (September 2014) BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia  Matthew S. Zabriskie, Christopher A. Eide, Srinivas K. Tantravahi, Nadeem A. Vellore, Johanna Estrada, Franck E. Nicolini, Hanna J. Khoury, Richard A. Larson, Marina Konopleva, Jorge E. Cortes, Hagop Kantarjian, Elias J. Jabbour, Steven M. Kornblau, Jeffrey H. Lipton, Delphine Rea, Leif Stenke, Gisela Barbany, Thoralf Lange, Juan-Carlos Hernández-Boluda, Gert J. Ossenkoppele, Richard D. Press, Charles Chuah, Stuart L. Goldberg, Meir Wetzler, Francois-Xavier Mahon, Gabriel Etienne, Michele Baccarani, Simona Soverini, Gianantonio Rosti, Philippe Rousselot, Ran Friedman, Marie Deininger, Kimberly R. Reynolds, William L. Heaton, Anna M. Eiring, Anthony D. Pomicter, Jamshid S. Khorashad, Todd W. Kelley, Riccardo Baron, Brian J. Druker, Michael W. Deininger, Thomas O’Hare  Cancer Cell  Volume 26, Issue 3, Pages 428-442 (September 2014) DOI: 10.1016/j.ccr.2014.07.006 Copyright © 2014 Elsevier Inc. Terms and Conditions

Cancer Cell 2014 26, 428-442DOI: (10.1016/j.ccr.2014.07.006) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 1 Clinically Reported BCR-ABL1 Compound Mutations Are Centered on 12 Key Positions (A) Crystal structure of the ABL1 kinase domain in complex with imatinib (PDB entry 2HYY). The 12 key positions accounting for most clinical BCR-ABL1 TKI resistance, including compound mutation-based resistance, are highlighted (orange; T315 is in red). The phosphate-binding (yellow) and activation loops (green) are indicated. (B and C) Key resistance positions (orange) in clinically reported T315I-inclusive (B) and non-T315I BCR-ABL1 compound mutants (C). Substitutions at non-key positions are in gray. 1, Shah et al., 2007; 2, Khorashad et al., 2008; 3, Stagno et al., 2008; 4, Kim et al., 2010; 5, Kim, D.W. et al., Blood 2010 abstract 3443; 6, Khorashad et al., 2013; 7, Smith, C.C., et al., Blood 2011, abstract 3752; 8, Soverini et al., 2013; 9, Cortes et al., 2013; 10, Hochhaus et al., 2013; ∗, the current study. See also Figure S1 and Table S1. Cancer Cell 2014 26, 428-442DOI: (10.1016/j.ccr.2014.07.006) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 2 Single and Compound BCR-ABL1 Mutants Exhibit Differential TKI Sensitivity in Ba/F3 Cells (A and B) Cell proliferation IC50 values of TKIs against BCR-ABL1 single mutants (A), T315I-inclusive (B, left) and non-T315I (B, right) compound mutants. Mean IC50 values are plotted. Blue lines denote average steady-state plasma concentration of each TKI in patients taking the standard daily dose: imatinib (400 mg; 3,377 nM) (Peng et al., 2004; Gozgit et al., Blood 2013, abstract 3992), nilotinib (400 mg twice daily; 2,754 nM) (Kantarjian et al., 2006; Gozgit et al., Blood 2013, abstract 3992), dasatinib (100 mg; 27 nM) (Gozgit et al., Blood 2013, abstract 3992; Talpaz et al., 2006), ponatinib (15, 30, and 45 mg/day doses are represented; 35, 84, and 101 nM, respectively) (Cortes et al., 2012; Gozgit et al., Blood 2013, abstract 3992), rebastinib (150 mg twice daily; 350 nM) (Chan et al., 2011; Eide et al., 2011), and bosutinib (500 mg; 287 nM) (Gozgit et al., Blood 2013, abstract 3992). (C) Heat map of TKI IC50s for single and compound mutants. I315M (see Figure 6) and T315I/E453K (see Figure 5) are included for comparison. A color gradient from green (sensitive) to yellow (moderately resistant) to red (highly resistant) denotes the IC50 sensitivity to each TKI: imatinib (green: <1,000 nM; yellow: 1,000–4,000 nM; red: >4,000 nM); nilotinib (green: <200 nM; yellow: 200–1,000 nM; red: >1,000 nM); dasatinib (green: <25 nM; yellow: 25–150 nM; red: >150 nM); ponatinib (green: <25 nM; yellow: 25–150 nM; red: >150 nM); rebastinib (green: < 100 nM; yellow: 100–1,000 nM; red: >1,000 nM); bosutinib (green: <150 nM; yellow: 150–1,000 nM; red: >1,000 nM). (D and E) BCR-ABL1 tyrosine phosphorylation (Y393) immunoblot analysis of T315I-inclusive (D) and non-T315I (E) compound mutants. NT, no treatment. See also Table S2. Cancer Cell 2014 26, 428-442DOI: (10.1016/j.ccr.2014.07.006) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 3 Molecular Dynamics Simulations of ABL1Y253H/E255V Provide a Structural Explanation for the Ineffectiveness of Ponatinib Compared to Dasatinib (A) Structural alignment of native ABL1 kinase (PDB entry 3IK3 bound to ponatinib; orange) with the ABL1Y253H/E255V mutant kinase (blue). Ponatinib is shown in wireframe. Positions within 4 Å of ponatinib were designated for structural alignment using only the Cα atoms. Native positions Y253 and E255 (green) and mutated positions H253 and V255 (red) are shown as spheres. The region of the backbone (P loop, C-helix, and DFG loop) that showed major conformational change is highlighted in either orange (native) or blue (Y253H/E255V). (B) Positions of selected residues in the ponatinib site of native ABL1 (orange) and ABL1Y253H/E255V (cyan). (C) Dasatinib was docked to a representative model of the ABL1Y253H/E255V mutant structure using molecular dynamics simulation. Key residues involved in binding of dasatinib are shown (cyan). The Y253H substitution establishes a new hydrogen bond with dasatinib, in addition to the existing T315-dasatinib hydrogen bond (red dashed lines). The chemical structure of dasatinib is shown using a space-filling wireframe representation. (D) Computational docking of dasatinib (black) and ponatinib (gray) into the mutant ABL1Y253H/E255V kinase domain (Suite 2012: GlideXP, Schrödinger, New York, NY, 2012). (E) Fold-change in cellular IC50 for BCR-ABL1Y253H/E255V relative to native BCR-ABL1 for dasatinib (black) and ponatinib (gray). Error bars represent ± SEM. See also Figure S2. Cancer Cell 2014 26, 428-442DOI: (10.1016/j.ccr.2014.07.006) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 4 BCR-ABL1E255V/T315I Exhibits Severely Compromised TKI Binding and Is Detected at Clinical Relapse on Ponatinib (A) Summary of BCR-ABL1 cloning and sequencing for patient #38 (Ph+ ALL) at baseline (upper) and EOT (lower) by cloning and sequencing individual amplicons. Conventional sequencing results and prior TKIs are shown. Light red bars represent mutations detected at key positions; dark red fractions of bars indicate additional mutations at other positions. For bars designated “None,” light and dark red fractions represent native BCR-ABL1 and all mutations not occurring at key positions, respectively. In this patient, a dominant, pan-TKI resistant E255V/T315I mutant was detected at the time of ponatinib failure. (B) Molecular dynamics comparison of E255V/T315I (blue; V255 in red) and T315I mutants (orange; E255 in green). (C) Structural realignments in E255V/T315I (cyan) compared to the T315I mutant (orange). See also Figure S3 and Table S6. Cancer Cell 2014 26, 428-442DOI: (10.1016/j.ccr.2014.07.006) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 5 Clinical Emergence of T315I-Inclusive Compound Mutants Can Lead to Relapse (A) Summary of BCR-ABL1 cloning and sequencing of individual clones for patient #36 (CML-BP) at baseline (upper) and EOT (lower). Conventional sequencing results and prior TKIs are shown. Bar graphs are as in Figure 4. (B) Fold-change in ponatinib Ba/F3 cellular IC50 values for BCR-ABL1F359V and BCR-ABL1T315I/F359V compared to native BCR-ABL1. (C) Summary of BCR-ABL1 cloning and sequencing for patient #12 (CML-AP). Samples were analyzed as in (A) at baseline (upper), while on ponatinib (middle), and at EOT (lower). (D) Fold-change in ponatinib Ba/F3 cellular IC50 values for BCR-ABL1T315I and BCR-ABL1T315I/E453K compared to native BCR-ABL1. All error bars represent ± SEM. See also Table S7. Cancer Cell 2014 26, 428-442DOI: (10.1016/j.ccr.2014.07.006) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 6 Acquired I315M Point Mutation-Based Ponatinib Failure in a Patient Harboring T315I at Onset of Therapy (A) Summary of BCR-ABL1 cloning and sequencing for patient #22 (Ph+ ALL) at baseline (upper), longitudinally on ponatinib therapy (middle), and at EOT (lower) by cloning and sequencing individual clones. Conventional sequencing results and prior TKIs are shown. Bar graphs are as in Figure 4. (B) Fold-change in ponatinib Ba/F3 cellular IC50 values for BCR-ABL1I315M and BCR-ABL1T315I compared to native BCR-ABL1. Error bars represent ± SEM. (C) Ponatinib (in wireframe) in complex with ABL1T315I (orange); ABL1I315M (blue) is superimposed. Structural alignment of the T315I and I315M mutants was performed as in Figure 3. (D) M315 penetrates deeply into the ponatinib site, and structural adjustments at positions 269, 290, 293, 317, 359, and 381 also disfavor ponatinib binding. See also Figure S4 and Table S8. Cancer Cell 2014 26, 428-442DOI: (10.1016/j.ccr.2014.07.006) Copyright © 2014 Elsevier Inc. Terms and Conditions

Figure 7 Certain Non-T315I Compound Mutants Lead to Clinical Relapse, while Others Are Susceptible to Ponatinib (A) Summary of BCR-ABL1 cloning and sequencing for patient #37 (Ph+ ALL) at baseline (upper) and EOT (lower) by cloning and sequencing individual amplicons. Conventional sequencing results and prior TKIs are shown. Bar graphs are as in Figure 4. (B) Summary of BCR-ABL1 cloning and sequencing for patient #34 (CML-AP) at baseline (upper) and while responding to ponatinib (lower). (C) Summary of BCR-ABL1 cloning and sequencing for patient #23 (CML-CP) at baseline (upper) and EOT (lower). (D) Summary of BCR-ABL1 cloning and sequencing for patient #27 (CML-CP) at baseline (upper) and while responding to ponatinib (lower). See also Table S9. Cancer Cell 2014 26, 428-442DOI: (10.1016/j.ccr.2014.07.006) Copyright © 2014 Elsevier Inc. Terms and Conditions