ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 38.

Slides:



Advertisements
Similar presentations
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 29 ECE
Advertisements

Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 22 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 30 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 23 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 17 ECE 6340 Intermediate EM Waves 1.
Notes 1 ECE 6340 Intermediate EM Waves Fall 2013
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 12 ECE
Notes 8 ECE Microwave Engineering Waveguides Part 5:
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 21 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 9 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 22 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Notes 8 ECE Microwave Engineering Fall 2015 Waveguides Part 5: Transverse Equivalent Network (TEN) 1.
Spring 2016 Notes 1 ECE 6341 Prof. David R. Jackson ECE Dept. 1.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 42 ECE 6341 Notes 44 1.
Spring 2015 Notes 25 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 42 ECE 6341 Notes 43 1.
Spring 2015 Notes 32 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Applied Electricity and Magnetism
Applied Electricity and Magnetism
Notes 3 ECE 3318 Applied Electricity and Magnetism Spring 2017
Notes 22 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 15.
Notes 27 ECE 6340 Intermediate EM Waves Fall 2016
Applied Electricity and Magnetism
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 41.
Notes 23 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 20.
ECE 6345 Fall 2015 Prof. David R. Jackson ECE Dept. Notes 11.
Notes 13 ECE 6340 Intermediate EM Waves Fall 2016
Applied Electricity and Magnetism
Applied Electricity and Magnetism
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 12.
Applied Electricity and Magnetism
Notes 12 ECE 6340 Intermediate EM Waves Fall 2016
Notes 9 ECE 6340 Intermediate EM Waves Fall 2016
Notes 5 ECE Microwave Engineering
Notes 17 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 39.
Notes 3 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 15.
Microwave Engineering
Microwave Engineering
Microwave Engineering
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 42.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 35.
Microwave Engineering
Notes 21 ECE 6340 Intermediate EM Waves Fall 2016
Notes 10 ECE 6340 Intermediate EM Waves Fall 2016
Notes 18 ECE 6340 Intermediate EM Waves Fall 2016
Notes 7 ECE 3318 Applied Electricity and Magnetism Coulomb’s Law I
Notes 48 Notes 42 ECE 6341 Spring 2016 Prof. David R. Jackson
Notes 5 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 30.
Applied Electromagnetic Waves Rectangular Waveguides
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 14.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 4.
Notes 18 ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson
Notes 11 ECE 3318 Applied Electricity and Magnetism Gauss’s Law II
Notes 8 ECE 3318 Applied Electricity and Magnetism Coulomb’s Law II
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 29.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 11.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 5.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 4.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 13.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 19.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 18.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 34.
Notes 24 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 16.
Presentation transcript:

ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 38

Spectral Domain Immittance (SDI) Method

SDI Method (cont.) The finite current sheet is thus represented as a set of infinite phased current sheets: where This phased current sheet launches a pair of plane waves as shown below: ks

SDI Method (cont.) ks Goal: Decompose the current into two parts: one that excites only a pair of TMz plane waves, and one that excites only a pair of TEz plane waves.

SDI Method (cont.) Define: Launching of plane wave by source:

SDI Method (cont.)

A proof of this is given next. SDI Method (cont.) A proof of this is given next.

SDI Method (cont.) TMz This figure shows the u component of the current launching a TMz plane wave.

SDI Method (cont.) TEz This figure shows the v component of the current launching a TEz plane wave.

SDI Method (cont.) Proof of launching property: Consider an arbitrary surface current. An infinite medium is considered, since we are only looking at the launching property of the waves. At z = 0 we have that Note: This follows from the fact that the magnetic vector potential component Ax is an even function of z (imagining the current to be in the x direction for simplicity here).

SDI Method (cont.) Hence

SDI Method (cont.) Two cases of interest for phased current sheets: This is the tangential magnetic field just above the infinite current sheet, which gets launched by the current sheet. Note: This result is general, and does not assume phased current sheets. Two cases of interest for phased current sheets:

SDI Method (cont.) Split original current into two parts: Launches TMz Launches TEz

Transverse Fields TMz : Et Ht

Transverse Fields (cont.) TEz : Et Ht

Transverse Equivalent Network TEN modeling equations:

TEN (cont.) Source

TEN (cont.) Source

Source Model Infinite phased current sheet inside layered medium

Source Model (cont.) so Hence Also Hence

Source Model (cont.) TMz Model:

Source Model (cont.) TEz Model: (derivation omitted)

Source Model (cont.) The transverse fields can then be found from

Source Model (cont.) Introduce normalized voltage and current functions: (following the notation of K. A. Michalski) Then we can write

Source Model (cont.) Hence

Find Ex (x, y, x) for z  0 due to a surface current at z = 0 Example Find Ex (x, y, x) for z  0 due to a surface current at z = 0 The current is radiating in free space. with

Example Decompose current into two parts:

Example (cont.)

Example (cont.)

Example (cont.) Hence

Example (cont.) TMz Model For z > 0:

Example (cont.) TEz Model For z > 0:

Example (cont.) Hence where

Example (cont.) Substituting in values, we have: Hence or or