William Greene Stern School of Business New York University

Slides:



Advertisements
Similar presentations
[Part 13] 1/30 Discrete Choice Modeling Hybrid Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Advertisements

Discrete Choice Modeling William Greene Stern School of Business IFS at UCL February 11-13, 2004
Discrete Choice Modeling William Greene Stern School of Business New York University.
3. Binary Choice – Inference. Hypothesis Testing in Binary Choice Models.
Discrete Choice Modeling William Greene Stern School of Business New York University.
12. Random Parameters Logit Models. Random Parameters Model Allow model parameters as well as constants to be random Allow multiple observations with.
[Part 1] 1/15 Discrete Choice Modeling Econometric Methodology Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Error Component models Ric Scarpa Prepared for the Choice Modelling Workshop 1st and 2nd of May Brisbane Powerhouse, New Farm Brisbane.
Part 12: Random Parameters [ 1/46] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University.
10. Multinomial Choice. A Microeconomics Platform Consumers Maximize Utility (!!!) Fundamental Choice Problem: Maximize U(x 1,x 2,…) subject to prices.
[Part 15] 1/24 Discrete Choice Modeling Aggregate Share Data - BLP Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
[Part 9] 1/79 Discrete Choice Modeling Modeling Heterogeneity Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2013 William Greene Department of Economics Stern School.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
[Part 4] 1/43 Discrete Choice Modeling Bivariate & Multivariate Probit Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling William Greene Stern School of Business New York University.
14. Scaling and Heteroscedasticity. Using Degenerate Branches to Reveal Scaling Travel Fly Rail Air CarTrain Bus LIMB BRANCH TWIG DriveGrndPblc.
Microeconometric Modeling
1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New.
[Part 7] 1/96 Discrete Choice Modeling Multinomial Choice Models Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Discrete Choice Modeling William Greene Stern School of Business New York University.
11. Nested Logit Models. Extended Formulation of the MNL Groups of similar alternatives Compound Utility: U(Alt)=U(Alt|Branch)+U(branch) Behavioral implications.
[Part 15] 1/24 Discrete Choice Modeling Aggregate Share Data - BLP Discrete Choice Modeling William Greene Stern School of Business New York University.
[Part 8] 1/26 Discrete Choice Modeling Nested Logit Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Discrete Choice Modeling William Greene Stern School of Business New York University.
1/30: Topic 4.1 – Nested Logit and Multinomial Probit Models Microeconometric Modeling William Greene Stern School of Business New York University New.
1/122: Topic 3.3 – Discrete Choice; The Multinomial Logit Model Microeconometric Modeling William Greene Stern School of Business New York University New.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Microeconometric Modeling
Microeconometric Modeling
William Greene Stern School of Business New York University
William Greene Stern School of Business New York University
Discrete Choice Modeling
Discrete Choice Modeling
Discrete Choice Modeling
Discrete Choice Modeling
William Greene Stern School of Business New York University
Econometric Analysis of Panel Data
Discrete Choice Models
Discrete Choice Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Econometric Analysis of Panel Data
Microeconometric Modeling
Microeconometric Modeling
Econometrics Chengyuan Yin School of Mathematics.
Discrete Choice Modeling
Microeconometric Modeling
Econometrics Chengyuan Yin School of Mathematics.
Microeconometric Modeling
Econometric Analysis of Panel Data
William Greene Stern School of Business New York University
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Econometric Analysis of Panel Data
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2019 William Greene Department of Economics Stern School.
William Greene Stern School of Business New York University
Empirical Methods for Microeconomic Applications
Microeconometric Modeling
Presentation transcript:

William Greene Stern School of Business New York University 1 Introduction 2 Binary Choice 3 Panel Data 4 Ordered Choice 5 Multinomial Choice 6 Heterogeneity 7 Latent Class 8 Mixed Logit 9 Stated Preference William Greene Stern School of Business New York University

Extended Formulation of the MNL Sets of similar alternatives Compound Utility: U(Alt)=U(Alt|Branch)+U(branch) Behavioral implications – Correlations within branches LIMB Travel BRANCH Private Public TWIG Air Car Train Bus

Correlation Structure for a Two Level Model Within a branch Identical variances (IIA (MNL) applies) Covariance (all same) = variance at higher level Branches have different variances (scale factors) Nested logit probabilities: Generalized Extreme Value Prob[Alt,Branch] = Prob(branch) * Prob(Alt|Branch)

Probabilities for a Nested Logit Model

Model Form RU1

Moving Scaling Down to the Twig Level

Higher Level Trees E.g., Location (Neighborhood) Housing Type (Rent, Buy, House, Apt) Housing (# Bedrooms)

Estimation Strategy for Nested Logit Models Two step estimation (ca. 1980s) For each branch, just fit MNL Loses efficiency – replicates coefficients For branch level, fit separate model, just including y and the inclusive values in the branch level utility function Again loses efficiency Full information ML (current) Fit the entire model at once, imposing all restrictions

----------------------------------------------------------- Discrete choice (multinomial logit) model Dependent variable Choice Log likelihood function -172.94366 Estimation based on N = 210, K = 10 R2=1-LogL/LogL* Log-L fncn R-sqrd R2Adj Constants only -283.7588 .3905 .3787 Chi-squared[ 7] = 221.63022 Prob [ chi squared > value ] = .00000 Response data are given as ind. choices Number of obs.= 210, skipped 0 obs --------+-------------------------------------------------- Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] GC| .07578*** .01833 4.134 .0000 TTME| -.10289*** .01109 -9.280 .0000 INVT| -.01399*** .00267 -5.240 .0000 INVC| -.08044*** .01995 -4.032 .0001 A_AIR| 4.37035*** 1.05734 4.133 .0000 AIR_HIN1| .00428 .01306 .327 .7434 A_TRAIN| 5.91407*** .68993 8.572 .0000 TRA_HIN3| -.05907*** .01471 -4.016 .0001 A_BUS| 4.46269*** .72333 6.170 .0000 BUS_HIN4| -.02295 .01592 -1.442 .1493 MNL Baseline

FIML Parameter Estimates ----------------------------------------------------------- FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function -166.64835 The model has 2 levels. Random Utility Form 1:IVparms = LMDAb|l Number of obs.= 210, skipped 0 obs --------+-------------------------------------------------- Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC| .06579*** .01878 3.504 .0005 TTME| -.07738*** .01217 -6.358 .0000 INVT| -.01335*** .00270 -4.948 .0000 INVC| -.07046*** .02052 -3.433 .0006 A_AIR| 2.49364** 1.01084 2.467 .0136 AIR_HIN1| .00357 .01057 .337 .7358 A_TRAIN| 3.49867*** .80634 4.339 .0000 TRA_HIN3| -.03581*** .01379 -2.597 .0094 A_BUS| 2.30142*** .81284 2.831 .0046 BUS_HIN4| -.01128 .01459 -.773 .4395 |IV parameters, lambda(b|l),gamma(l) PRIVATE| 2.16095*** .47193 4.579 .0000 PUBLIC| 1.56295*** .34500 4.530 .0000 FIML Parameter Estimates

Elasticities Decompose Additively

+-----------------------------------------------------------------------+ | Elasticity averaged over observations. | | Attribute is INVC in choice AIR | | Decomposition of Effect if Nest Total Effect| | Trunk Limb Branch Choice Mean St.Dev| | Branch=PRIVATE | | * Choice=AIR .000 .000 -2.456 -3.091 -5.547 3.525 | | Choice=CAR .000 .000 -2.456 2.916 .460 3.178 | | Branch=PUBLIC | | Choice=TRAIN .000 .000 3.846 .000 3.846 4.865 | | Choice=BUS .000 .000 3.846 .000 3.846 4.865 | | Attribute is INVC in choice CAR | | Choice=AIR .000 .000 -.757 .650 -.107 .589 | | * Choice=CAR .000 .000 -.757 -.830 -1.587 1.292 | | Choice=TRAIN .000 .000 .647 .000 .647 .605 | | Choice=BUS .000 .000 .647 .000 .647 .605 | | Attribute is INVC in choice TRAIN | | Choice=AIR .000 .000 1.340 .000 1.340 1.475 | | Choice=CAR .000 .000 1.340 .000 1.340 1.475 | | * Choice=TRAIN .000 .000 -1.986 -1.490 -3.475 2.539 | | Choice=BUS .000 .000 -1.986 2.128 .142 1.321 | | * indicates direct Elasticity effect of the attribute. |

Testing vs. the MNL Log likelihood for the NL model Constrain IV parameters to equal 1 with ; IVSET(list of branches)=[1] Use likelihood ratio test For the example: LogL (NL) = -166.68435 LogL (MNL) = -172.94366 Chi-squared with 2 d.f. = 2(-166.68435-(-172.94366)) = 12.51862 The critical value is 5.99 (95%) The MNL (and a fortiori, IIA) is rejected

Degenerate Branches LIMB Travel BRANCH Fly Ground TWIG Air Train Car Bus

NL Model with a Degenerate Branch ----------------------------------------------------------- FIML Nested Multinomial Logit Model Dependent variable MODE Log likelihood function -148.63860 --------+-------------------------------------------------- Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Attributes in the Utility Functions (beta) GC| .44230*** .11318 3.908 .0001 TTME| -.10199*** .01598 -6.382 .0000 INVT| -.07469*** .01666 -4.483 .0000 INVC| -.44283*** .11437 -3.872 .0001 A_AIR| 3.97654*** 1.13637 3.499 .0005 AIR_HIN1| .02163 .01326 1.631 .1028 A_TRAIN| 6.50129*** 1.01147 6.428 .0000 TRA_HIN2| -.06427*** .01768 -3.635 .0003 A_BUS| 4.52963*** .99877 4.535 .0000 BUS_HIN3| -.01596 .02000 -.798 .4248 |IV parameters, lambda(b|l),gamma(l) FLY| .86489*** .18345 4.715 .0000 GROUND| .24364*** .05338 4.564 .0000

Using Degenerate Branches to Reveal Scaling

Heterogeneity and the MNL Model Limitations of the MNL Model: IID  IIA Fundamental tastes are the same across all individuals How to adjust the model to allow variation across individuals? Full random variation Latent grouping – allow some variation

Accommodating Heterogeneity Observed? Enter in the model in familiar (and unfamiliar) ways. Unobserved? Takes the form of randomness in the model.

Observable Heterogeneity in Utility Levels Choice, e.g., among brands of cars xitj = attributes: price, features zit = observable characteristics: age, sex, income

Observable Heterogeneity in Preference Weights

Modeling Unobserved Heterogeneity Latent class – Discrete approximation Mixed logit – Continuous Many extensions and blends of LC and RP

Latent Class Models

Latent Classes Population contains a mixture of individuals of different types Common form of the generating mechanism within the classes Observed outcome y is governed by the common process F(y|x,j ) Classes are distinguished by the parameters, j.

The “Finite Mixture Model” An unknown parametric model governs an outcome y F(y|x,) This is the model We approximate F(y|x,) with a weighted sum of specified (e.g., normal) densities: F(y|x,)  j j G(y|x,) This is a search for functional form. With a sufficient number of (normal) components, we can approximate any density to any desired degree of accuracy. (McLachlan and Peel (2000)) There is no “mixing” process at work

Density. Note significant mass below zero Density? Note significant mass below zero. Not a gamma or lognormal or any other familiar density.

ML Mixture of Two Normal Densities

Mixing probabilities .715 and .285

The actual process is a mix of chi squared(5) and normal(3,2) with mixing probabilities .7 and .3.

Approximation Actual Distribution

The Latent Class “Model” Parametric Model: F(y|x,) E.g., y ~ N[x, 2], y ~ Poisson[=exp(x)], etc. Density F(y|x,)  j j F(y|x,j ),  = [1, 2,…, J, 1, 2,…, J] j j = 1 Generating mechanism for an individual drawn at random from the mixed population is F(y|x,). Class probabilities relate to a stable process governing the mixture of types in the population

RANDOM Parameter Models

A Recast Random Effects Model

A Computable Log Likelihood

Simulation

Random Effects Model: Simulation ---------------------------------------------------------------------- Random Coefficients Probit Model Dependent variable DOCTOR (Quadrature Based) Log likelihood function -16296.68110 (-16290.72192) Restricted log likelihood -17701.08500 Chi squared [ 1 d.f.] 2808.80780 Simulation based on 50 Halton draws --------+------------------------------------------------- Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] |Nonrandom parameters AGE| .02226*** .00081 27.365 .0000 ( .02232) EDUC| -.03285*** .00391 -8.407 .0000 (-.03307) HHNINC| .00673 .05105 .132 .8952 ( .00660) |Means for random parameters Constant| -.11873** .05950 -1.995 .0460 (-.11819) |Scale parameters for dists. of random parameters Constant| .90453*** .01128 80.180 .0000 --------+------------------------------------------------------------- Implied  from these estimates is .904542/(1+.904532) = .449998.

The Entire Parameter Vector is Random

Maximum Simulated Likelihood True log likelihood Simulated log likelihood

S M

MSSM

A Hierarchical Probit Model Uit = 1i + 2iAgeit + 3iEducit + 4iIncomeit + it. 1i=1+11 Femalei + 12 Marriedi + u1i 2i=2+21 Femalei + 22 Marriedi + u2i 3i=3+31 Femalei + 32 Marriedi + u3i 4i=4+41 Femalei + 42 Marriedi + u4i Yit = 1[Uit > 0] All random variables normally distributed.

Simulating Conditional Means for Individual Parameters Posterior estimates of E[parameters(i) | Data(i)]

“Individual Coefficients”

Generalized Mixed Logit Model

Scaled MNL

Observed and Unobserved Heterogeneity

Price Elasticities