OpenGL Texture Mapping

Slides:



Advertisements
Similar presentations
TEXTURE MAPPING JEFF CHASTINE 1. TEXTURE MAPPING Applying an image (or a texture ) to geometry 2D images (rectangular) 3D images (volumetric – such as.
Advertisements

OpenGL Texture Mapping
Texture Mapping CPSC /24/03 Abhijeet Ghosh.
CSC345: Advanced Graphics & Virtual Environments
OpenGL Texture Mapping
OpenGL Texture Mapping Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico.
1 Lecture 12 Texture Mapping uploading of the texture to the video memory the application of the texture onto geometry.
OpenGL Texture Mapping April 16, Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002 Basic Stragegy Three steps to applying a texture.
CS 4731: Computer Graphics Lecture 17: Texturing Emmanuel Agu.
Texture Mapping A way of adding surface details Two ways can achieve the goal:  Surface detail polygons: create extra polygons to model object details.
1 Texture Maps Jeff Parker Oct Objectives Introduce Mapping Methods Texture Mapping Environment Mapping Bump Mapping Billboards Consider basic.
CSE Real Time Rendering Week 11, 12, 13. Texture Mapping Courtesy: Ed Angel 2.
Texture Mapping. To add surface details… World of Warcraft, Blizzard Inc. More polygons (slow and hard to handle small details) Less polygons but with.
Computer Graphics Texture Mapping Eriq Muhammad Adams
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
2IV60 Computer Graphics set 10: Texture mapping Jack van Wijk TU/e.
Texture Mapping. Scope Buffers Buffers Various of graphics image Various of graphics image Texture mapping Texture mapping.
Texture Mapping Course: Computer Graphics Presented by Fan Chen
Computer Graphics Ben-Gurion University of the Negev Fall 2012.
Mapping method Texture Mapping Environmental mapping (sphere mapping) (cube mapping)
An Interactive Introduction to OpenGL Programming Ed Angel
COMPUTER GRAPHICS Hochiminh city University of Technology Faculty of Computer Science and Engineering CHAPTER 8: Texture Mapping.
ECSE-4750 Computer Graphics Fall 2004 Prof. Michael Wozny TA. Abhishek Gattani TA. Stephen
Imaging and Raster Primitives Vicki Shreiner. 2 Jobs Andrew Giles Andrew Giles Chuck Fultz Chuck Fultz SIGGraph - SIGGraph.
CS380 LAB IV OpenGL Jonghyeob Lee Reference1. [OpenGL course slides by Rasmus Stenholt] Reference2. [
Texture Mapping. 2 Motivation A typical modern graphics card can handle 10s of millions of polygons a second. How many individual blades of grass are.
OpenGL Texture Mapping. 2 Objectives Introduce the OpenGL texture functions and options.
Texture Mapping Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
CS 480/680 Computer Graphics OpenGL Texture Mapping Dr. Frederick C Harris, Jr. Fall 2011.
Texture Mapping Software College, Shandong University Instructor: Zhou Yuanfeng
Texture Mapping Drawing Pictures on Polygons. Texture Mapping.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
CG Summary: OpenGL Shading andTextures Angel, Chapters 5, 7; “Red Book” slides from AW, red book, etc. CSCI 6360/4360.
111/17/ :24 UML Solution Involves Selection of Discrete Representation Values.
2 COEN Computer Graphics I Evening’s Goals n Discuss displaying and reading image primitives n Describe texture mapping n Discuss OpenGL modes and.
Texture Mapping. 2 3 Loading Textures void glTexImage2D (GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLint border,
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
Computer Graphics Bing-Yu Chen National Taiwan University.
1 Graphics CSCI 343, Fall 2015 Lecture 25 Texture Mapping.
Texture Mapping and NURBS Week 7 David Breen Department of Computer Science Drexel University Based on material from Ed Angel, University of New Mexico.
第三课. Overview of this Section Concept of Texture Mapping ( 纹理映射 ) 2D Texture 3D Texture Environment Mapping Bump Mapping Others OpenGL Implementation.
Texture Mapping. For Further Reading Angel 7 th Ed: ­Chapter 7: 7.3 ~ 7.9 Beginning WebGL: ­Chapter 3 2.
1 Chapter 7 Texture Mapping. 2 The Limits of Geometric Modeling Although graphics cards can render over 10 million polygons per second, that number is.
Viewing and Texture Mapping In OPENGL. VIEWING 1.One or more objects 2.A viewer with a projection surface 3.Projectors that go from the object(s) to.
CS425 © 2003 Ray S. Babcock Pixels and Bitmaps ● OpenGL allows us to work directly with bits and groups of bits, or pixels, which flow down a parallel.
Texture Mapping CEng 477 Introduction to Computer Graphics.
Environment Maps Ed Angel Professor Emeritus of Computer Science
Madhulika (18010), Assistant Professor, LPU.
Texture Mapping Fall, 2016.
Texture Mapping 고려대학교 컴퓨터 그래픽스 연구실 kucg.korea.ac.kr.
Texture Mapping We can improve the realism of graphics models by mapping a texture pattern (image) onto the modeled object surface. We refer to this technique.
OpenGL Texture Mapping
Angel: Interactive Computer Graphics5E © Addison-Wesley 2009
Advanced Graphics Algorithms Ying Zhu Georgia State University
Advanced Graphics Algorithms Ying Zhu Georgia State University
OpenGL Texture Mapping
Introduction to Computer Graphics with WebGL
Computer Graphics, Lee Byung-Gook, Dongseo Univ.
Chapters VIII Image Texturing
Introduction to Computer Graphics with WebGL
Introduction to Texture Mapping
3D Game Programming Texture Mapping
Introduction to Computer Graphics with WebGL
Computer Graphics Practical Lesson 6
OpenGL Texture Mapping
Programming Textures Lecture 15 Fri, Sep 28, 2007.
Texture Mapping Ed Angel Professor Emeritus of Computer Science
3D Game Programming Texture Mapping
OpenGL Texture Mapping
Presentation transcript:

OpenGL Texture Mapping Ed Angel Professor Emeritus of Computer Science University of New Mexico E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives Introduce the OpenGL texture functions and options E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Basic Stragegy Three steps to applying a texture specify the texture read or generate image assign to texture enable texturing assign texture coordinates to vertices Proper mapping function is left to application specify texture parameters wrapping, filtering E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Texture Mapping y z x display geometry t image s E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Texture Example The texture (below) is a 256 x 256 image that has been mapped to a rectangular polygon which is viewed in perspective E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Texture Mapping and the OpenGL Pipeline Images and geometry flow through separate pipelines that join during fragment processing “complex” textures do not affect geometric complexity geometry pipeline vertices pixel pipeline image fragmentprocessor E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Specifying a Texture Image Define a texture image from an array of texels (texture elements) in CPU memory Glubyte my_texels[512][512]; Define as any other pixel map Scanned image Generate by application code Enable texture mapping glEnable(GL_TEXTURE_2D) OpenGL supports 1-4 dimensional texture maps E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Define Image as a Texture glTexImage2D( target, level, components, w, h, border, format, type, texels ); target: type of texture, e.g. GL_TEXTURE_2D level: used for mipmapping (discussed later) components: elements per texel w, h: width and height of texels in pixels border: used for smoothing (discussed later) format and type: describe texels texels: pointer to texel array glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB, GL_UNSIGNED_BYTE, my_texels); E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Mapping a Texture Based on parametric texture coordinates glTexCoord*() specified at each vertex Texture Space Object Space t 1, 1 (s, t) = (0.2, 0.8) 0, 1 A a c (0.4, 0.2) b B C s (0.8, 0.4) 0, 0 1, 0 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Typical Code offset = 0; GLuint vPosition = glGetAttribLocation( program, "vPosition" ); glEnableVertexAttribArray( vPosition ); glVertexAttribPointer( vPosition, 4, GL_FLOAT, GL_FALSE, 0,BUFFER_OFFSET(offset) ); offset += sizeof(points); GLuint vTexCoord = glGetAttribLocation( program, "vTexCoord" ); glEnableVertexAttribArray( vTexCoord ); glVertexAttribPointer( vTexCoord, 2,GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(offset) ); E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Interpolation OpenGL uses interpolation to find proper texels from specified texture coordinates Can be distortions texture stretched over trapezoid showing effects of bilinear interpolation good selection of tex coordinates poor selection of tex coordinates E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Texture Parameters OpenGL has a variety of parameters that determine how texture is applied Wrapping parameters determine what happens if s and t are outside the (0,1) range Filter modes allow us to use area averaging instead of point samples Mipmapping allows us to use textures at multiple resolutions Environment parameters determine how texture mapping interacts with shading E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Wrapping Mode Clamping: if s,t > 1 use 1, if s,t <0 use 0 Wrapping: use s,t modulo 1 glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP ) glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT ) texture s t GL_CLAMP wrapping GL_REPEAT E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Magnification and Minification More than one texel can cover a pixel (minification) or more than one pixel can cover a texel (magnification) Can use point sampling (nearest texel) or linear filtering ( 2 x 2 filter) to obtain texture values Texture Polygon Magnification Minification E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Filter Modes Modes determined by glTexParameteri( target, type, mode ) glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXURE_MIN_FILTER, GL_LINEAR); Note that linear filtering requires a border of an extra texel for filtering at edges (border = 1) E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Mipmapped Textures Mipmapping allows for prefiltered texture maps of decreasing resolutions Lessens interpolation errors for smaller textured objects Declare mipmap level during texture definition glTexImage2D( GL_TEXTURE_*D, level, … ) E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Example point sampling linear filtering mipmapped point sampling E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

glTexEnv{fi}[v]( GL_TEXTURE_ENV, prop, param ) Texture Functions Controls how texture is applied glTexEnv{fi}[v]( GL_TEXTURE_ENV, prop, param ) GL_TEXTURE_ENV_MODE modes GL_MODULATE: modulates with computed shade GL_BLEND: blends with an environmental color GL_REPLACE: use only texture color GL(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); Set blend color with GL_TEXTURE_ENV_COLOR E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Using Texture Objects specify textures in texture objects set texture filter set texture function set texture wrap mode set optional perspective correction hint bind texture object enable texturing supply texture coordinates for vertex coordinates can also be generated E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Other Texture Features Environment Maps Start with image of environment through a wide angle lens Can be either a real scanned image or an image created in OpenGL Use this texture to generate a spherical map Alternative is to use a cube map Multitexturing Apply a sequence of textures through cascaded texture units E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Applying Textures Textures are applied during fragments shading by a sampler Samplers return a texture color from a texture object in vec4 color; //color from rasterizer in vec2 texCoord; //texure coordinate from rasterizer uniform sampler2D texture; //texture object from application void main() { gl_FragColor = color * texture2D( texture, texCoord ); } E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Vertex Shader Usually vertex shader will output texture coordinates to be rasterized Must do all other standard tasks too Compute vertex position Compute vertex color if needed in vec4 vPosition; //vertex position in object coordinates in vec4 vColor; //vertex color from application in vec2 vTexCoord; //texture coordinate from application out vec4 color; //output color to be interpolated out vec2 texCoord; //output tex coordinate to be interpolated E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Checkerboard Texture GLubyte image[64][64][3]; // Create a 64 x 64 checkerboard pattern for ( int i = 0; i < 64; i++ ) { for ( int j = 0; j < 64; j++ ) { GLubyte c = (((i & 0x8) == 0) ^ ((j & 0x8) == 0)) * 255; image[i][j][0] = c; image[i][j][1] = c; image[i][j][2] = c; E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Adding Texture Coordinates void quad( int a, int b, int c, int d ) { quad_colors[Index] = colors[a]; points[Index] = vertices[a]; tex_coords[Index] = vec2( 0.0, 0.0 ); index++; points[Index] = vertices[b]; tex_coords[Index] = vec2( 0.0, 1.0 ); Index++; // other vertices } E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Texture Object GLuint textures[1]; glActiveTexture( GL_TEXTURE0 ); glGenTextures( 1, textures ); glBindTexture( GL_TEXTURE_2D, textures[0] ); glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB, TextureSize, TextureSize, 0, GL_RGB, GL_UNSIGNED_BYTE, image ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST ); GL_TEXTURE_MIN_FILTER, GL_NEAREST ); glActiveTexture( GL_TEXTURE0 ); E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Linking with Shaders GLuint vTexCoord = glGetAttribLocation( program, "vTexCoord" ); glEnableVertexAttribArray( vTexCoord ); glVertexAttribPointer( vTexCoord, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(offset) ); // Set the value of the fragment shader texture sampler variable // ("texture") to the the appropriate texture unit. In this case, // zero, for GL_TEXTURE0 which was previously set by calling // glActiveTexture(). glUniform1i( glGetUniformLocation(program, "texture"), 0 ); E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012