Black Holes in the Deepest Extragalactic X-ray Surveys

Slides:



Advertisements
Similar presentations
207th AAS Meeting Washington D.C., 8-13 January The Spitzer SWIRE Legacy Program Spitzer Wide-Area Infrared Extragalactic Survey Mari Polletta (UCSD)
Advertisements

The W i d e s p r e a d Influence of Supermassive Black Holes Christopher Onken Herzberg Institute of Astrophysics Christopher Onken Herzberg Institute.
Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
The Highest-Redshift Quasars and the End of Cosmic Dark Ages Xiaohui Fan Collaborators: Strauss,Schneider,Richards, Hennawi,Gunn,Becker,White,Rix,Pentericci,
Swift/BAT Hard X-ray Survey Preliminary results in Markwardt et al ' energy coded color.
The multiwavelength surveys of the ELAIS-S1 and GOODS fields Fabrizio Fiore & M. Brusa, A. Comastri, C. Feruglio, A. Fontana, A. Grazian, F. La Franca,
A Bolometric Approach To Galaxy And AGN Evolution. L. L. Cowie Venice 2006 (primarily from Wang, Cowie and Barger 2006, Cowie and Barger 2006 and Wang.
Probing the X-ray Universe: Analysis of faint sources with XMM-Newton G. Hasinger, X. Barcons, J. Bergeron, H. Brunner, A. C. Fabian, A. Finoguenov, H.
Star formation at high redshift (2 < z < 7) Methods for deriving star formation rates UV continuum = ionizing photons (dust obscuration?) Ly  = ionizing.
Anton Koekemoer AAS 207, Washington DC, 10 January Using COSMOS to Probe the High-Redshift AGN Population Anton Koekemoer (Space Telescope Science.
AGN and Quasar Clustering at z= : Results from the DEEP2 + AEGIS Surveys Alison Coil Hubble Fellow University of Arizona Chandra Science Workshop.
THE MODERATELY LARGE SCALE STRUCTURE OF QUASARS
Boston, November 2006 Extragalactic X-ray surveys Paolo Tozzi Spectral analysis of X-ray sources in the CDFS.
Dusty star formation at high redshift Chris Willott, HIA/NRC 1. Introductory cosmology 2. Obscured galaxy formation: the view with current facilities,
 Galaxies with extremely violent energy release in their nuclei  Active Galactic Nuclei (AGN)  Up to many thousand times more luminous than the entire.
Massive galaxies at z > 1.5 By Hans Buist Supervisor Scott Trager Date22nd of june 2007.
X-ray Surveys with Space Observatory Khyung Hee University Kim MinBae Park Jisook.
The variable X-ray spectrum of PDS456 and High-Velocity Outflows Shai Kaspi Technion – Haifa; Tel-Aviv University Israel & Ehud Behar, James Reeves “ The.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Wide Field Imagers in Space and the Cluster Forbidden Zone Megan Donahue Space Telescope Science Institute Acknowledgements to: Greg Aldering (LBL) and.
Black Hole Growth and Galaxy Evolution Meg Urry Yale University.
Introduction to the X-ray background Chandra Deep Field-North data Source Redshifts Diversity of X-ray selected sources Constraints on AGN evolution AGNs.
Coevolution of black holes and galaxies at high redshift David M Alexander (Durham)
Jennifer Lotz Hubble Science Briefing Jan. 16, 2014 Exploring the Depths of the Universe.
Obscured AGN and XRB models Andrea Comastri (INAF-OABologna-Italy) Roberto Gilli (INAF-OABologna-Italy) F. Fiore (INAF-OARoma-Italy) G. Hasinger (MPE-Garching-
A multi-colour survey of NGC253 with XMM-Newton Robin Barnard, Lindsey Shaw Greening & Ulrich Kolb The Open University.
ASTRONOMY BROWN BAG SEMINAR SWIRE Spitzer Wide – area Infra Red Extragalactic survey MARCH 17, 2009 DAVID CORLISS.
The Evolution of AGN Obscuration
X-ray clues on the nature of sub-mm galaxies I.Georgantopoulos INAF/OABO A Comastri INAF/OABO E. Rovilos MPE.
MMT Science Symposium1 “false-color” keV X-ray image of the Bootes field Thousands of AGNs in the 9.3 square degree Bootes field * X-ray and infrared.
The Evolution of AGN Obscuration
The Accretion History of SMBHs in Massive Galaxies Kate Brand STScI Collaborators: M. Brown, A. Dey, B. Jannuzi, and the XBootes and Bootes MIPS teams.
Revealing X-ray obscured Quasars in SWIRE sources with extreme MIR/O Giorgio Lanzuisi Fabrizio Fiore Enrico Piconcelli Chiara Feruglio Cristian Vignali.
Structure Formation in the Universe Concentrate on: the origin of structure in the Universe How do we make progress?How do we make progress? What are the.
AGN deep multiwavelength surveys: the case of the Chandra Deep Field South Fabrizio Fiore Simonetta Puccetti, Giorgio Lanzuisi.
Galaxies with Active Nuclei Chapter 14:. Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus).  “active galactic.
The NuSTAR Extragalactic Survey: A 1 st Look at the Distant High-Energy X-ray Background D.R. Ballantyne (Georgia Tech) on behalf of M. Ajello, D. Alexander,
Exploringthe μJy and nJy Sky with the EVLA and the SKA Ken Kellermann NRAO East Asia SKA Workshop December 3, /2/20111KASI, Daejeon, Korea.
HST Workshop Bologna Jan 31, 2008 Heavily obscured SMBH at high redshift Andrea Comastri INAF - OABologna C. Vignali, R. Gilli, K. Iwasawa, F. Civano,
Observations of Obscured Black Holes
Robust identification of distant Compton-thick AGNs IR AGN Optical AGN Need for deep optical-mid-IR spectroscopy: multiple lines of evidence for intrinsic.
The Black Hole-Galaxy Evolution Connection Ezequiel Treister Einstein Fellow IfA, Hawaii IfA, Hawaii Credit: ESO/NASA, the AVO project and Paolo Padovani.
AGN / Starbursts in the very dusty systems in Bootes Kate Brand + the Bootes team NOAO Lijiang, August 2005.
The History of Active Galaxies A.Barger, P. Capak, L. Cowie, RFM, A. Steffen, and Y. Yang Active Galaxies (AKA quasars, Seyfert galaxies etc) are radiating.
Chapter 21 Galaxy Evolution Looking Back Through Time Our goals for learning How do we observe the life histories of galaxies? How did galaxies.
Warm Dust in the Most Distant Quasars Ran Wang Department of Astronomy, Peking University, China.
Active Galaxies Galaxies with extremely violent energy release in their nuclei (pl. of nucleus). → “Active Galactic Nuclei” (= AGN) Up to many thousand.
Multiwavelength AGN Number Counts in the GOODS fields Ezequiel Treister (Yale/U. de Chile) Meg Urry (Yale) And the GOODS AGN Team.
High Redshift Galaxies/Galaxy Surveys ALMA Community Day April 18, 2011 Neal A. Miller University of Maryland.
Color Magnitude Diagram VG. So we want a color magnitude diagram for AGN so that by looking at the color of an AGN we can get its luminosity –But AGN.
Why is the BAT survey for AGN Important? All previous AGN surveys were biased- –Most AGN are ‘obscured’ in the UV/optical –IR properties show wide scatter.
AEGIS-X: Results from the Chandra survey of the Extended Groth Strip
Chandra Science Highlight
Growth of SMBH studied through X-ray surveys
Evidence for a Population of high redshift Submm Galaxies
Multiwavelength Images
The Space Density of Compton Thick AGN
Quasars, Active Galaxies, and super-massive black holes
X-ray Properties of Intermediate Mass Black Holes in Dwarf AGN
Andrea Comastri (INAF- Oss. Astr. Bologna)
Mike Brotherton: HST Images of Post-Starburst Quasars
Dense gas history of the Universe  Tracing the fuel for galaxy formation over cosmic time SF Law SFR Millennium Simulations, Obreschkow & Rawlings 2009;
LINERs: The X-ray Perspective John McNulty
Active Versus Normal Galaxies
Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide.
Galaxies With Active Nuclei
Galaxies With Active Nuclei
Authod: Ryan L. Sanders et al.(2018)
Shaji Vattakunnel - University of Trieste
Borislav Nedelchev et al. 2019
Presentation transcript:

Black Holes in the Deepest Extragalactic X-ray Surveys Chandra X-ray Observatory X-ray Multi-Mirror Mission-Newton Angular res. and positions improved by factor ~ 10. 50-250 times sensitivity of previous missions. Photon collection improved by factor ~ 10. Both operating well and can likely continue for ~ 5-10 more years.

X-ray Imaging Optics

X-ray CCD Detectors XMM-Newton EPIC Chandra ACIS

The Cosmic X-ray Background

X-rays from Active Galaxies

Nuclear Obscuration in Active Galaxies Obscuring “Torus” Cut-Through View

Three Important Reasons to Survey in X-rays 1. X-ray emission universal property of accreting supermassive black holes 2. Penetrating; reduced absorption bias 3. Low dilution by host-galaxy light X-ray emission can penetrate and measure large amounts of absorbing material. Majority of active galaxies are absorbed. Absorption bias drops going to high redshift.

Penetrating Power of X-rays

Many Complementary X-ray Surveys Ongoing Blue = Chandra Green = XMM-Newton Red = ROSAT About 35 ongoing surveys with Chandra and XMM-Newton. Usually performed in regions with strong multiwavelength data and / or notable objects. Together the surveys cover a broad part of the sensitivity vs. solid-angle “discovery space”. I will focus on results from the deepest X-ray surveys. Equally important results from wider X-ray surveys!

Supporting Multiwavelength Data: HST

Supporting Multiwavelength Data: Spitzer

Supporting Multiwavelength Data: Submillimeter James Clerk Maxwell Telescope Mauna Kea, Hawaii

The Deepest X-ray Surveys to Date The Chandra Deep Field-North (CDF-N) The CDF-S and Extended CDF-S 250 ks to 2 Ms coverage 1125 arcmin2 (~ 150% Moon) ~ 990 point sources

Matching of X-ray and Optical Sources

Optical Spectroscopic Follow-Up Observations to Get Redshifts Keck Observatory Very Large Telescope

Follow-Up Challenges and Results X-ray Number Counts for Chandra Deep Fields 50-70% spectroscopic completeness overall. Good completeness to I ~ 23-24. Hundreds of very faint sources, often with weak-to-moderate line emission. Further deep spectroscopy needed to identify these. Likely are obscured AGN at z ~ 1.5-6. More than 70% of sources are z ~ 0.1-5 AGN. AGN source density ~ 7200 deg-2. Also many starburst and normal galaxies. Rapidly rising population to faintest X-ray fluxes.

Highlights on Some Key Topics Number-density and spectral evolution of AGN. AGN content of distant submillimeter galaxies. Other great topics: Host galaxies, AGN clustering, variability, absorption, starburst & normal galaxies, clusters & groups.

Evolution of Luminous Quasars

Luminosity Dependent AGN Evolution Number-Density Changes for AGN of Different Luminosities Probe evolution of moderate luminosity AGN. More numerous! Lower luminosity AGN peaked later. Called “anti-hierarchical growth” or “cosmic downsizing.” Basic result appears robust to incompleteness, but details still uncertain. More “frugal” X-ray universe than some expected before Chandra and XMM-Newton. X-ray background not dominated by many obscured quasars. AGN make ~ 5-10% of the power in the Universe since the formation of galaxies (not ~ 50%).

Black-Hole Accretion Versus Cosmic Star Formation SFR density Scaled SMBH accretion-rate density Accretion-rate density and cosmic star-formation rate density similar to first order.

Luminosity Dependence and Evolution of AGN Spectra X-ray strong BQS BQS SDSS z > 4 snapshots E-CDF-S SDSS Seyfert 1s X-ray weak E-CDF-S BQS SDSS E-CDF-S SDSS z > 4 snapshots Luminosity dependence of X-ray vs. total power. X-ray fraction declines with luminosity. Not understood. No detectable redshift dependence. X-ray-to-optical flux ratios of AGN change by < 30% from z = 0-6. Despite large number-density changes, individual AGN “unit” is remarkably stable over ~ all of cosmic history.

AGN Content of Distant Submillimeter Galaxies Submm from dust-shrouded starbursts forming stars at ~ 1000 solar masses / year. About 1000 times more common at z ~ 2 as today. Likely seeing the epoch of spheroid formation in massive galaxies at z ~ 1.5-4.0. James Clerk Maxwell Telescope Mauna Kea, Hawaii Submm sources in 2 Ms Chandra Deep Field-North Green = X-ray detected submm sources (17/20) Yellow = X-ray undetected submm sources (3/20) Can we see the black hole growing inside the forming spheroid? About 85% of submm galaxies with precise positions have detections in Chandra Deep Field-North. Detection fraction much higher than for any other coeval galaxy population. Most appear to contain obscured AGN. Seeing simultaneous growth of black hole and spheroid in “pre-quasar” phase? 0.5-8 keV image

Pushing Back the “Edge” of the X-ray Universe Chandra has not yet reached its natural limits. Can go much deeper while remaining confusion free and largely photon limited. Heavily obscured AGN that are currently missed Better photon statistics for better X-ray spectra and variability Normal and starburst galaxies

Prospects for the Long Term NuSTAR eROSITA International X-ray Observatory