Tracking Phospholipid Populations in Polymorphism by Sideband Analyses of 31P Magic Angle Spinning NMR  Liam Moran, Nathan Janes  Biophysical Journal 

Slides:



Advertisements
Similar presentations
Dynamic Molecular Structure of DPPC-DLPC-Cholesterol Ternary Lipid System by Spin- Label Electron Spin Resonance  Yun-Wei Chiang, Yuhei Shimoyama, Gerald.
Advertisements

Structural Analysis of Nanoscale Self-Assembled Discoidal Lipid Bilayers by Solid-State NMR Spectroscopy  Ying Li, Aleksandra Z. Kijac, Stephen G. Sligar,
Volume 106, Issue 6, Pages (March 2014)
Ewa K. Krasnowska, Enrico Gratton, Tiziana Parasassi 
Investigation of Domain Formation in Sphingomyelin/Cholesterol/POPC Mixtures by Fluorescence Resonance Energy Transfer and Monte Carlo Simulations  Monica.
Ismail M. Hafez, Steven Ansell, Pieter R. Cullis  Biophysical Journal 
Volume 84, Issue 5, Pages (May 2003)
Thomas G. Anderson, Harden M. McConnell  Biophysical Journal 
Volume 97, Issue 5, Pages (September 2009)
Molecular Dynamics Simulations of the Lipid Bilayer Edge
Hydrophobic Surfactant Proteins Strongly Induce Negative Curvature
Molecular Orientation and Conformation of Phosphatidylinositides in Membrane Mimetics Using Variable Angle Sample Spinning (VASS) NMR  Anita I. Kishore,
Sheila G. Couto, M. Cristina Nonato, Antonio J. Costa-Filho 
Volume 82, Issue 2, Pages (February 2002)
Volume 85, Issue 5, Pages (November 2003)
Volume 99, Issue 10, Pages (November 2010)
Volume 98, Issue 11, Pages (June 2010)
Volume 96, Issue 11, Pages (June 2009)
Volume 112, Issue 7, Pages (April 2017)
Volume 77, Issue 1, Pages (July 1999)
Membrane Insertion and Lipid-Protein Interactions of Bovine Seminal Plasma Protein PDC-109 Investigated by Spin-Label Electron Spin Resonance Spectroscopy 
Unitary Conductance Variation in Kir2
Shuichi Toraya, Katsuyuki Nishimura, Akira Naito  Biophysical Journal 
Volume 75, Issue 4, Pages (October 1998)
Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes  Jens Ehrig, Eugene P. Petrov, Petra Schwille 
An Equilibrium Model for the Combined Effect of Macromolecular Crowding and Surface Adsorption on the Formation of Linear Protein Fibrils  Travis Hoppe,
Volume 112, Issue 4, Pages (February 2017)
Membrane Thickening by the Antimicrobial Peptide PGLa
PH-Dependent Conformation, Dynamics, and Aromatic Interaction of the Gating Tryptophan Residue of the Influenza M2 Proton Channel from Solid-State NMR 
Experimental and Computational Studies Investigating Trehalose Protection of HepG2 Cells from Palmitate-Induced Toxicity  Sukit Leekumjorn, Yifei Wu,
Heleen Meuzelaar, Jocelyne Vreede, Sander Woutersen 
Coarse-Grained Molecular Dynamics Simulations of Phase Transitions in Mixed Lipid Systems Containing LPA, DOPA, and DOPE Lipids  Eric R. May, Dmitry I.
Ivan V. Polozov, Klaus Gawrisch  Biophysical Journal 
Analysis of Dynamic Brain Imaging Data
Volume 113, Issue 12, Pages (December 2017)
Michael Katzer, William Stillwell  Biophysical Journal 
Volume 114, Issue 5, Pages (March 2018)
Role of Cholesterol in the Formation and Nature of Lipid Rafts in Planar and Spherical Model Membranes  Jonathan M. Crane, Lukas K. Tamm  Biophysical.
Volume 112, Issue 1, Pages (January 2017)
Serial, Covert Shifts of Attention during Visual Search Are Reflected by the Frontal Eye Fields and Correlated with Population Oscillations  Timothy J.
Orsolya Toke, W. Lee Maloy, Sung Joon Kim, Jack Blazyk, Jacob Schaefer 
Sarah L. Veatch, Sarah L. Keller  Biophysical Journal 
Volume 105, Issue 9, Pages (November 2013)
G. Garbès Putzel, Mark J. Uline, Igal Szleifer, M. Schick 
Volume 96, Issue 11, Pages (June 2009)
Electrostatic Control of Phospholipid Polymorphism
Comparative Molecular Dynamics Simulation Studies of Protegrin-1 Monomer and Dimer in Two Different Lipid Bilayers  Huan Rui, Jinhyuk Lee, Wonpil Im 
Volume 93, Issue 2, Pages (July 2007)
Structure and Topology of the Huntingtin 1–17 Membrane Anchor by a Combined Solution and Solid-State NMR Approach  Matthias Michalek, Evgeniy S. Salnikov,
Dynamics of Active Semiflexible Polymers
K.J. Tielrooij, D. Paparo, L. Piatkowski, H.J. Bakker, M. Bonn 
On the Role of Acylation of Transmembrane Proteins
Volume 94, Issue 11, Pages (June 2008)
Jesús Sot, Luis A. Bagatolli, Félix M. Goñi, Alicia Alonso 
Volume 80, Issue 5, Pages (May 2001)
Segmental Polymorphism in a Functional Amyloid
Volume 99, Issue 11, Pages (December 2010)
Volume 104, Issue 2, Pages (January 2013)
Scott M. Blackman, Eric J. Hustedt, Charles E. Cobb, Albert H. Beth 
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Phase-Separation and Domain-Formation in Cholesterol-Sphingomyelin Mixture: Pulse- EPR Oxygen Probing  Laxman Mainali, Marija Raguz, Witold K. Subczynski 
Influence of the Long-Chain/Short-Chain Amphiphile Ratio on Lateral Diffusion of PEG- Lipid in Magnetically Aligned Lipid Bilayers as Measured via Pulsed-Field-Gradient.
Volume 99, Issue 11, Pages (December 2010)
Volume 112, Issue 7, Pages (April 2017)
Lipid Librations at the Interface with the Na,K-ATPase
Itay Budin, Noam Prywes, Na Zhang, Jack W. Szostak  Biophysical Journal 
Volume 76, Issue 1, Pages (January 1999)
Volume 87, Issue 6, Pages (December 2004)
Emmanuel O. Awosanya, Alexander A. Nevzorov  Biophysical Journal 
Volume 90, Issue 4, Pages (February 2006)
Presentation transcript:

Tracking Phospholipid Populations in Polymorphism by Sideband Analyses of 31P Magic Angle Spinning NMR  Liam Moran, Nathan Janes  Biophysical Journal  Volume 75, Issue 2, Pages 867-879 (August 1998) DOI: 10.1016/S0006-3495(98)77575-7 Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 1 31P NMR approach to tracking phospholipid populations in polymorphism. The bilayer and inverted hexagonal structures are distinguished with 31P MAS NMR. Spectra are shown for Ole2PtdCho/Ole2PtdEtn/Chol (25:30:45mol%). (A) Nonspinning spectrum of a bilayer structure at 22°C. (B) Nonspinning spectrum of the inverted hexagonal structure formed in the same sample at 67°C. (C) MAS spectrum (1400Hz) of A. (D) MAS (1400Hz) spectrum of B. (E) Simulation of C. (F) Simulation of D. The small peak at −2.2ppm visible in A, C, and D is the internal chemical shift reference standard (phosphocreatine). The isotropic peak in B at ∼0.0ppm is from isotropic (e.g., cubic) structures. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 2 Tracking phospholipid populations in the Lα→HII equilibrium of Ole2PtdCho-Ole2PtdEtn-Chol (25:30:45mol%). Representative spectra are shown at the temperatures indicated. (A) Nonspinning spectra. (B) MAS spectra (1400Hz). PtdCho is shifted upfield or to lower frequencies. (C) Expansion of the asterisked second left spinning sideband. The vertical scale is magnified from top to bottom by 1, 3.3, 11.5, and 11.5, respectively. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 3 Tracking phospholipid populations in the Lα→HII equilibrium of Myr2PtdCho-Ole2PtdEtn-Chol (21:34:45mol%). Representative spectra are shown at the temperatures indicated. (A) Nonspinning spectra. (B) MAS spectra (1400Hz). (C) Expansion of the asterisked second left spinning sideband. The vertical scale is magnified from top to bottom by 1, 2.7, 6.3, and 6.3, respectively. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 4 Deconvolution of the second left sideband peak pair demonstrates the changes in the PtdCho/PtdEtn population ratio that reflect changes in the phospholipid composition of the bilayer. Peaks from Fig. 3 C at (A) 28°C and (B) 68°C are shown (solid lines). The fitted spectral components and their sum are shown as dotted lines. The residuals are shown below. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 5 Distributional preferences of phospholipids in PtdCho/Ole2PtdEtn/Chol polymorphism. The top and middle rows of panels depict the fraction of PtdCho and PtdEtn, respectively, in the bilayer (■), inverted hexagonal (□), and isotropic (♦) phases. The bottom row of panels represents the ratio of PtdCho/PtdEtn in the bilayer. The three lipid mixtures are as follows: (A) Ole2PtdCho/Ole2PtdEtn/Chol (25:30:45mol%), (B) Lau2PtdCho/Ole2PtdEtn/Chol (21:34:45mol%), (C) Myr2PtdCho/Ole2PtdEtn/Chol (21:34:45mol%). Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 6 Phospholipid populations in polymorphism. The individual phospholipid phase preferences shown in Fig. 5 are summed and presented as a function of temperature. A, B, C and the symbols are defined in Fig. 5. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 7 Correlation between the distributional preferences of the phospholipids and the transition width. The apparent partition coefficient of phosphatidylcholine (see text) is plotted against the apparent width of the transition and fit to an empirical linear function. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 8 Effects of tetradecane on the distributional preferences of Ole2PtdCho/Ole2PtdEtn (1:3) polymorphism. 31P NMR spectra (A) in the absence and (B) in the presence of 1.3wt% tetradecane at 22°C after 5h equilibration. (Left) Static, (middle) MAS (1.4kHz), and (right) expansion of the asterisked second sideband, respectively. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 9 Distributional phase preferences of Pam2PtdMe/PamOlePtdEtn/diolein at the temperatures indicated at (A) static and (B) MAS at 1400Hz, and (C) expansion of second left sideband region of the spectra of B. The vertical expansions, in order from top to bottom, are 1, 1.15, 1.93, and 7.5. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions

Figure 10 Distributional phase preferences in Pam2PtdMe/PamOlePtdEtn/diolein (20:75:5). The fractions of (A) PtdMe and (B) PtdEtn in the bilayer (■), inverted hexagonal (□), and isotropic (♦) phases throughout the transition are shown. (C) The PtdMe/PtdEtn molar ratio in the bilayer. Biophysical Journal 1998 75, 867-879DOI: (10.1016/S0006-3495(98)77575-7) Copyright © 1998 The Biophysical Society Terms and Conditions