SKIP LISTS Amihood Amir Incorporationg the slides of Goodrich and Tamassia (2004)

Slides:



Advertisements
Similar presentations
CS16: Introduction to Data Structures & Algorithms
Advertisements

David Luebke 1 6/7/2014 CS 332: Algorithms Skip Lists Introduction to Hashing.
© 2004 Goodrich, Tamassia Skip Lists1 S0S0 S1S1 S2S2 S3S
Skip Lists. Outline and Reading What is a skip list (§9.4) – Operations (§9.4.1) – Search – Insertion – Deletion Implementation Analysis (§9.4.2) – Space.
CS 225 Lab #11 – Skip Lists.
The Dictionary ADT: Skip List Implementation
David Luebke 1 6/7/2014 ITCS 6114 Skip Lists Hashing.
© 2004 Goodrich, Tamassia Heaps © 2004 Goodrich, Tamassia Heaps2 Recall Priority Queue ADT (§ 7.1.3) A priority queue stores a collection of.
© 2004 Goodrich, Tamassia Hash Tables
Skip Lists Present By PAKDEE PATTANAJEDSADA SITTHICHOK SNANSIENG SIWAKORN THAMMAYTHA PATOMPOL TAESUJI
CSC 172 DATA STRUCTURES. SKIP LISTS Read Weiss
© 2004 Goodrich, Tamassia Hash Tables1  
October 26, 2005Copyright © by Erik D. Demaine and Charles E. LeisersonL11.1 Introduction to Algorithms 6.046J/18.401J LECTURE12 Skip Lists Data.
Expected Running Times and Randomized Algorithms Instructor Neelima Gupta
© 2004 Goodrich, Tamassia Quick-Sort     29  9.
© 2004 Goodrich, Tamassia QuickSort1 Quick-Sort     29  9.
Quick-Sort     29  9.
© 2004 Goodrich, Tamassia Quick-Sort     29  9.
Data Structures Lecture 13 Fang Yu Department of Management Information Systems National Chengchi University Fall 2010.
© 2004 Goodrich, Tamassia Skip Lists1  S0S0 S1S1 S2S2 S3S3    2315.
CSC401 – Analysis of Algorithms Lecture Notes 7 Multi-way Search Trees and Skip Lists Objectives: Introduce multi-way search trees especially (2,4) trees,
© 2004 Goodrich, Tamassia Binary Search Trees   
Skip Lists Michael Oudshoorn. CS351 Software Engineering (AY05)2 Skip Lists Binary Search Trees: O(log n) –If, and only if, the tree is “balanced” Insertion.
© 2004 Goodrich, Tamassia Selection1. © 2004 Goodrich, Tamassia Selection2 The Selection Problem Given an integer k and n elements x 1, x 2, …, x n, taken.
© 2004 Goodrich, Tamassia Merge Sort1 Quick-Sort     29  9.
© 2004 Goodrich, Tamassia (2,4) Trees
Skip Lists1 Skip Lists William Pugh: ” Skip Lists: A Probabilistic Alternative to Balanced Trees ”, 1990  S0S0 S1S1 S2S2 S3S3 
Introduction To Algorithms CS 445 Discussion Session 2 Instructor: Dr Alon Efrat TA : Pooja Vaswani 02/14/2005.
Skip Lists Mrutyunjay. Introduction ▪ Linked Lists Benefits & Drawbacks: – Benefits: – Easy Insert and Deletes, implementations. – Drawbacks: – Hard to.
CSC Analysis of Algorithms 3-1 CSC401 – Analysis of Algorithms Chapter 3 Search Trees and Skip Lists Objectives: Review binary search trees and present.
Sorting Fun1 Chapter 4: Sorting     29  9.
Hash Tables1   © 2010 Goodrich, Tamassia.
© 2004 Goodrich, Tamassia Hash Tables1  
Randomized Algorithms CSc 4520/6520 Design & Analysis of Algorithms Fall 2013 Slides adopted from Dmitri Kaznachey, George Mason University and Maciej.
Skip Lists 二○一七年四月二十五日
© 2004 Goodrich, Tamassia Quick-Sort     29  9.
CHAPTER 9 HASH TABLES, MAPS, AND SKIP LISTS ACKNOWLEDGEMENT: THESE SLIDES ARE ADAPTED FROM SLIDES PROVIDED WITH DATA STRUCTURES AND ALGORITHMS IN C++,
Instructor Neelima Gupta Expected Running Times and Randomized Algorithms Instructor Neelima Gupta
Lecture 9COMPSCI.220.FS.T Lower Bound for Sorting Complexity Each algorithm that sorts by comparing only pairs of elements must use at least 
CSCE 3110 Data Structures & Algorithm Analysis Rada Mihalcea Dictionaries. Reading Weiss Chap. 5, Sec
2/19/2016 3:18 PMSkip Lists1  S0S0 S1S1 S2S2 S3S3    2315.
Towers of Hanoi Move n (4) disks from pole A to pole B such that a larger disk is never put on a smaller disk A BC ABC.
QuickSort by Dr. Bun Yue Professor of Computer Science CSCI 3333 Data.
Skip Lists – Why? BSTs –Worse case insertion, search O(n) –Best case insertion, search O(log n) –Where your run fits in O(n) – O(log n) depends on the.
Chapter 11 Sorting Acknowledgement: These slides are adapted from slides provided with Data Structures and Algorithms in C++, Goodrich, Tamassia and Mount.
Maps 1/28/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser,
Skip Lists S3   S2   S1   S0  
Sorted Maps © 2014 Goodrich, Tamassia, Goldwasser Skip Lists.
Skip Lists 5/10/2018 Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M.
Searching an Array: Binary Search
Chapter 10.1 Binary Search Trees
Quick-Sort 9/12/2018 3:26 PM Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
Skip Lists S3 + - S2 + - S1 + - S0 + -
Selection Selection 1 Quick-Sort Quick-Sort 10/30/16 13:52
Objectives Introduce different known sorting algorithms
Skip Lists.
Skip Lists S3 + - S2 + - S1 + - S0 + -
SKIP LIST & SKIP GRAPH James Aspnes Gauri Shah
Skip Lists S3 + - S2 + - S1 + - S0 + -
Sorted Maps © 2014 Goodrich, Tamassia, Goldwasser Skip Lists.
Dictionaries < > = /3/2018 8:58 AM Dictionaries
Parasol Lab, Dept. CSE, Texas A&M University
CH 9 : Maps And Dictionary
Quick-Sort 2/25/2019 2:22 AM Quick-Sort     2
Copyright © Aiman Hanna All rights reserved
Quick-Sort 4/8/ :20 AM Quick-Sort     2 9  9
Skip List: formally A skip list for a set S of distinct (key, element) items is a series of lists S0, S1 , … , Sh such that Each list Si contains the special.
Quick-Sort 4/25/2019 8:10 AM Quick-Sort     2
CS210- Lecture 17 July 12, 2005 Agenda Collision Handling
Chapter 11 Sets, and Selection
Presentation transcript:

SKIP LISTS Amihood Amir Incorporationg the slides of Goodrich and Tamassia (2004)

Sorted Linked List S0S0 S1S1 S2S2 S3S Search Time: The effect is that of a binary search. So search time is: O(log n).

What about Space? Problem: Insertions and deletions Solution: Skip lists (Bill Pugh 2000 )

What is a Skip List A skip list for a set S of distinct (key, element) items is a series of lists S 0, S 1, …, S h such that –Each list S i contains the special keys and –List S 0 contains the keys of S in nondecreasing order –Each list is a subsequence of the previous one, i.e., S 0 S 1 … S h –List S h contains only the two special keys We show how to use a skip list to implement the dictionary ADT S0S0 S1S1 S2S2 S3S3 © 2004 Goodrich Tamassia

Search We search for a key x in a a skip list as follows: –We start at the first position of the top list –At the current position p, we compare x with y key(next(p)) x y : we return element(next(p)) x y : we scan forward x y : we drop down –If we try to drop down past the bottom list, we return null Example: search for 78 S0S0 S1S1 S2S2 S3S © 2004 Goodrich Tamassia

Randomized Algorithms - Coin tossing עץ או פלאי ישראל או פרוטה Heads or Tails

Randomized Algorithms A randomized algorithm performs coin tosses (i.e., uses random bits) to control its execution It contains statements of the type b random() if b 0 do A … else { b 1} do B … Its running time depends on the outcomes of the coin tosses We analyze the expected running time of a randomized algorithm under the following assumptions –the coins are unbiased, and –the coin tosses are independent The worst-case running time of a randomized algorithm is often large but has very low probability (e.g., it occurs when all the coin tosses give heads) We use a randomized algorithm to insert items into a skip list © 2004 Goodrich Tamassia

To insert an entry (x, o) into a skip list, we use a randomized algorithm: –We repeatedly toss a coin until we get tails, and we denote with i the number of times the coin came up heads –If i h, we add to the skip list new lists S h 1, …, S i 1, each containing only the two special keys –We search for x in the skip list and find the positions p 0, p 1, …, p i of the items with largest key less than x in each list S 0, S 1, …, S i –For j 0, …, i, we insert item (x, o) into list S j after position p j Example: insert key 15, with i 2 Insertion S0S0 S1S1 S2S2 S0S0 S1S1 S2S2 S3S p0p0 p1p1 p2p2 © 2004 Goodrich Tamassia

Deletion To remove an entry with key x from a skip list, we proceed as follows: –We search for x in the skip list and find the positions p 0, p 1, …, p i of the items with key x, where position p j is in list S j –We remove positions p 0, p 1, …, p i from the lists S 0, S 1, …, S i –We remove all but one list containing only the two special keys Example: remove key S0S0 S1S1 S2S2 S0S0 S1S1 S2S2 S3S p0p0 p1p1 p2p2 © 2004 Goodrich Tamassia

Space Usage The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm We use the following two basic probabilistic facts: Fact 1: The probability of getting i consecutive heads when flipping a coin is 1 2 i Fact 2: If each of n entries is present in a set with probability p, the expected size of the set is np Consider a skip list with n entries –By Fact 1, we insert an entry in list S i with probability 1 2 i –By Fact 2, the expected size of list S i is n 2 i The expected number of nodes used by the skip list is Thus, the expected space usage of a skip list with n items is O(n) © 2004 Goodrich Tamassia

Height The running time of the search an insertion algorithms is affected by the height h of the skip list We show that with high probability, a skip list with n items has height O(log n) We use the following additional probabilistic fact: Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most np Consider a skip list with n entires –By Fact 1, we insert an entry in list S i with probability 1 2 i –By Fact 3, the probability that list S i has at least one item is at most n 2 i By picking i 3log n, we have that the probability that S 3log n has at least one entry is at most n 2 3log n n n 3 1 n 2 Thus a skip list with n entries has height at most 3log n with probability at least 1 1 n 2 © 2004 Goodrich Tamassia

Search and Update Times The search time in a skip list is proportional to –the number of drop-down steps, plus –the number of scan-forward steps The drop-down steps are bounded by the height of the skip list and thus are O(log n) with high probability To analyze the scan-forward steps, we use yet another probabilistic fact: Fact 4: The expected number of coin tosses required in order to get tails is 2 When we scan forward in a list, the destination key does not belong to a higher list –A scan-forward step is associated with a former coin toss that gave tails By Fact 4, in each list the expected number of scan- forward steps is 2 Thus, the expected number of scan-forward steps is O(log n) We conclude that a search in a skip list takes O(log n) expected time The analysis of insertion and deletion gives similar results © 2004 Goodrich Tamassia

Summary A skip list is a data structure for dictionaries that uses a randomized insertion algorithm In a skip list with n entries –The expected space used is O(n) –The expected search, insertion and deletion time is O(log n) Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability Skip lists are fast and simple to implement in practice © 2004 Goodrich Tamassia

Is there a deterministic scheme? Yes! We will see Balanced Trees A deterministic version of skip lists is similar to some balanced trees (2-3 trees).