Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.

Slides:



Advertisements
Similar presentations
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Advertisements

Chemical Reaction Engineering
Conversion and Reactor Sizing
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 19 Tuesday 3/18/08 Gas Phase Reactions Trends and Optimuns.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 20 Thursday 3/20/08 Multiple Reactions with Heat Effects.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture18 Thursday 3/13/08 Solution to Tuesdays In-class Problem. User Friendly Energy Balance Derivations Adiabatic (Tuesday’s lecture). Heat Exchange.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 13 Tuesday 2/19/08 Complex Reactions A +2B --> C 2A + 3C --> D Liquid Phase PFR Liquid Phase CSTR Gas Phase PFR Gas Phase Membrane Reactor Sweep.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Tutorial 4 solutions Lecturer: Miss Anis Atikah Ahmad
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
1 - 12/09/2015 Department of Chemical Engineering Lecture 6 Kjemisk reaksjonsteknikk Chemical Reaction Engineering  Review of previous lectures  Pressure.
Chemical Reaction Engineering Asynchronous Video Series Chapter 4, Part 1: Applying the Algorithm to a CSTR H. Scott Fogler, Ph.D.
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 4: Reaction Stoichiometry Measures Other Than Conversion H. Scott Fogler, Ph.D.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Conversion and Reactor Sizing Lec 4 week 4. Definition of Conversion for the following reaction The reaction can be arranged as follows: how far the above.
Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
CSTR in series and in parallel
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Steady-state Nonisothermal reactor Design Part I
Steady-state Nonisothermal reactor Design Part I
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering Asynchronous Video Series
Steady-state Nonisothermal reactor Design Part I
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Conversion and the Design Equations
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Multiple Reactions Chapter 6.
Steady-state Nonisothermal reactor Design Part I
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 7 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering
Presentation transcript:

Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Web Lecture 22 Class Lecture 18-Thursday Multiple Reactions with Heat Effects

Multiple Reactions with Heat Effects PFR/PBR: CSTR: These equations are coupled with the mole balances and rate law equations.

Multiple Reactions with Heat Effects Make sure it is in respect to A; Subscripts must agree

Multiple Reactions with Heat Effects 1) Mole Balances:– every species (no conversion!) 2) Rate Laws: – relative rates – net rates 3) Stoichiometry:

Multiple Reactions with Heat Effects

Multiple Reactions with Heat Effects 5) Parameters

Multiple Reactions with Heat Effects

The complex gas phase reactions take place in a 10 dm3 PFR with a heat exchanger. Plot the temperature, concentrations, molar flow rates down the length of the reactor for the following operations. E.g., Note any maximums or minimums on your plot along with how they change for the different types of operations. (a) Adiabatic operation (b) Heat exchange with constant Ta (c) Co current heat exchange (d) Counter current heat exchange (e) For parts (c) and (d), plot Qr and Qg down the length of the reactor. What do you observe? Additional Information

Multiple Reactions with Heat Effects

Multiple Reactions with Heat Effects in a PFR and CSTR Examples: and and

Example A: Liquid Phase CSTR NOTE: The specific reaction rate k1A is defined with respect to species A. NOTE: The specific reaction rate k2C is defined with respect to species C.

Example A: Liquid Phase CSTR The complex liquid phase reactions take place in a 2,500 dm3 CSTR. The feed is equal molar in A and B with FA0=200 mol/min, the volumetric flow rate is 100 dm3/min and the reation volume is 50 dm3. Find the concentrations of A, B, C and D existing in the reactor along with the existing selectivity. Plot FA, FB, FC, FD and SC/D as a function of V

Example A: Liquid Phase CSTR Solution Liquid Phase CSTR 1) Mole Balances: (1) (2) (3) (4) 2) Net Rates: (5)

Example A: Liquid Phase CSTR 3) Stoichiometry: (16) (17) (18) (19) 4) Parameters: (20) (21) (22)

Example B: Liquid Phase PFR Takes place in a PFR. The feed is equal molar in A and B and FA0=200 mol/min and the volumetric flow rate is 100 dm3/min. The reaction volume is 50 dm3 and the rate constants are: Rate laws are the same as Example A. Plot FA, FB, FC, FD and SC/D as a function of V.

Example B: Liquid Phase PFR 1) Mole Balances:

Example B: Liquid Phase PFR 2) Net Rates: (5) (6) (7) (8) 2) Rate Laws: (9) (10)

Example B: Liquid Phase PFR 2) Relative Rates: Reaction 1 (11) (12) Reaction 2 (13) (14)

Example B: Liquid Phase PFR 2) Rate Laws:

Example B: Liquid Phase PFR 3) Stoichiometry:

Multiple Reactions with Heat Effects Parameters:

Selectivity If one were to write SC/D=FC/FD in the Polymath program, Polymath would not execute because at V=0, FC=0 resulting in an undefined volume (infinity) at V=0. To get around this problem we start the calculation 10-4 dm3 from the reactor entrance where FD will not be zero and use the following IF statement. (15)

Selectivity 3) Stoichiometry: Parameters: (16) (17) (18) (19) (20) (21) (22)

End of Web Lecture 22 Class Lecture 18