Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.

Slides:



Advertisements
Similar presentations
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Advertisements

Chapter 6 Multiple Reactions.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 12 Tuesday 2/12/08 Multiple Reactions Selectivety and Yield Series Reactions Complex Reactions.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Batch Stoichiometric Table SpeciesSymbolInitialChangeRemaining DD ________ ____________ CC B B A A InertI where and.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 18 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 11 Thursday 2/7/08 Determining the Rate Law from Experimental Data Integral Method Graphical Method Nonlinear Least Regression Multiple Reactions.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 13 Tuesday 2/19/08 Complex Reactions A +2B --> C 2A + 3C --> D Liquid Phase PFR Liquid Phase CSTR Gas Phase PFR Gas Phase Membrane Reactor Sweep.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering Asynchronous Video Series Chapter 6, Part 1: Series, Parallel and Complex Liquid Phase Reactions: Selectivity, Mole Balances.
By Noor Amirah Abdul Halim.  Parallel reactions  Series reactions  Complex reactions (parallel and series reactions)  Independent reactions.
CHBE 424: Chemical Reaction Engineering
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 4: Reaction Stoichiometry Measures Other Than Conversion H. Scott Fogler, Ph.D.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Isothermal Reactor Design
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chapter 6 Chemical Reaction Engineering Mutiple Reactions.
Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Chemical Reaction Engineering Asynchronous Video Series Chapter 3, Part 2: Reaction Stoichiometry: Batch H. Scott Fogler, Ph.D.
Reactor Design. تحت شعار العيد فرحة : الجمهور : طبعا النهاردة نص يوم علشان العيد خلص امبارح؟ أنا : لأ الجمهور : يعني النهاردة هناخد سكشن؟ أنا : ونص الجمهور.
Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they.
Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
ChE 402: Chemical Reaction Engineering
Lecture 19 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
CSTR in series and in parallel
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering Asynchronous Video Series
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 13 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering Asynchronous Video Series
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 5 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 4 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 22 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering Asynchronous Video Series
Multiple Reactions Chapter 6.
Steady-state Nonisothermal reactor Design Part I
Chemical Reaction Engineering
Lecture 6 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 9 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 10 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 23 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Lecture 3 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors.
Chemical Reaction Engineering
Presentation transcript:

Lecture 12 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place.

Lecture 12 – Tuesday Multiple Reactions Selectivity and Yield Series Reactions Complex Reactions

4 Types of Multiple Reactions Series: A → B → C Parallel: A → D A → U Independent: A → B C → D Complex: A + B →C + D A + C → E With multiple reactors, either molar flow or number of moles must be used (no conversion!)

Selectivity and Yield There are two types of selectivity and yield: Instantaneous and Overall. Instantaneous Overall Selectivity Yield

Selectivity and Yield Example: Desired Product: Undesired Product: To maximize the selectivity of D with respect to U run at high concentration of A and use PFR.

Gas Phase Multiple Reactions

Multiple Reactions A) Mole Balance of each and every species Flow Batch

Multiple Reactions B) Rates a) Rate Law for each reaction: b) Net Rates: c) Relative Rates:

Multiple Reactions C) Stoichiometry Gas: Liquid: Example: A → B → C (1) A → B k1 (2) B → C k2

Batch Series Reactions 1) Mole Balances V=V0 (constant batch)

Batch Series Reactions 2) Rate Laws Laws Net rates Relative rates

Example: Batch Series Reactions topt Ci A B C A → B → C (1) A → B (2) B → C 1) Mole Balances

Example: Batch Series Reactions 2) Rate Laws Laws: Relative:

Example: Batch Series Reactions 3) Combine Species A: Species B:

Example: Batch Series Reactions Using the integrating factor, at t = 0, CB=0

Example: CSTR Series Reactions ABC What is the optimal ? 1) Mole Balances A: B:

Example: CSTR Series Reactions ABC 2) Rate Laws Laws: Relative: Net:

Example: CSTR Series Reactions ABC 3) Combine

Example: CSTR Series Reactions ABC Find that gives maximum concentration of B

End of Lecture 12

Supplementary Slides

Blood Coagulation

Notations

Notations

Mole Balances

Mole Balances

Mole Balances

Results

Blood Coagulation Many metabolic reactions involve a large number of sequential reactions, such as those that occur in the coagulation of blood. Cut → Blood → Clotting Figure A. Normal Clot Coagulation of blood (picture courtesy of: Mebs, Venomous and Poisonous Animals, Medpharm, Stugart 2002, Page 305)

Schematic of Blood Coagulation

Cut A + B C D E F Clot