He Meng, Johan Bosman, Thijn van der Heijden, John van Noort 

Slides:



Advertisements
Similar presentations
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Advertisements

Kinetics of the Triplex-Duplex Transition in DNA
Volume 100, Issue 8, Pages (April 2011)
Temperature Control Methods in a Laser Tweezers System
Matan Goldshtein, David B. Lukatsky  Biophysical Journal 
Changing Chromatin Fiber Conformation by Nucleosome Repositioning
High-Density 3D Single Molecular Analysis Based on Compressed Sensing
Peter J. Mulligan, Yi-Ju Chen, Rob Phillips, Andrew J. Spakowitz 
Volume 115, Issue 4, Pages (November 2003)
Volume 111, Issue 8, Pages (October 2016)
Volume 92, Issue 11, Pages (June 2007)
Lara Scharrel, Rui Ma, René Schneider, Frank Jülicher, Stefan Diez 
Local Geometry and Elasticity in Compact Chromatin Structure
Phase Transitions in Biological Systems with Many Components
Topological Polymorphism of the Two-Start Chromatin Fiber
Volume 111, Issue 10, Pages (November 2016)
Quantifying Cell Adhesion through Impingement of a Controlled Microjet
Volume 111, Issue 2, Pages (July 2016)
Volume 99, Issue 4, Pages (August 2010)
Volume 100, Issue 8, Pages (April 2011)
Serapion Pyrpassopoulos, Henry Shuman, E. Michael Ostap 
Intact Telopeptides Enhance Interactions between Collagens
Volume 83, Issue 5, Pages (November 2002)
Optical Pushing: A Tool for Parallelized Biomolecule Manipulation
DNA Translocation Governed by Interactions with Solid-State Nanopores
Liqun Zhang, Susmita Borthakur, Matthias Buck  Biophysical Journal 
Volume 96, Issue 2, Pages (January 2009)
Mechanical Distortion of Single Actin Filaments Induced by External Force: Detection by Fluorescence Imaging  Togo Shimozawa, Shin'ichi Ishiwata  Biophysical.
Anton Arkhipov, Wouter H. Roos, Gijs J.L. Wuite, Klaus Schulten 
Qiaochu Li, Stephen J. King, Ajay Gopinathan, Jing Xu 
Volume 107, Issue 6, Pages (September 2014)
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Mark C. Leake, David Wilson, Mathias Gautel, Robert M. Simmons 
Emergent Global Contractile Force in Cardiac Tissues
Yuno Lee, Philip A. Pincus, Changbong Hyeon  Biophysical Journal 
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Volume 99, Issue 2, Pages (July 2010)
Volume 112, Issue 1, Pages (January 2017)
Bart Smeets, Maxim Cuvelier, Jiri Pešek, Herman Ramon 
Volume 103, Issue 2, Pages (July 2012)
Azobenzene Photoisomerization-Induced Destabilization of B-DNA
Real-Time Nanopore-Based Recognition of Protein Translocation Success
Volume 111, Issue 12, Pages (December 2016)
Will J. Eldridge, Zachary A. Steelman, Brianna Loomis, Adam Wax 
Volume 96, Issue 5, Pages (March 2009)
Volume 109, Issue 3, Pages (August 2015)
The Effect of Dye-Dye Interactions on the Spatial Resolution of Single-Molecule FRET Measurements in Nucleic Acids  Nicolas Di Fiori, Amit Meller  Biophysical.
Velocity-Dependent Mechanical Unfolding of Bacteriorhodopsin Is Governed by a Dynamic Interaction Network  Christian Kappel, Helmut Grubmüller  Biophysical.
Michael Schlierf, Felix Berkemeier, Matthias Rief  Biophysical Journal 
Dirk Gillespie, Le Xu, Gerhard Meissner  Biophysical Journal 
Venkat Maruthamuthu, Margaret L. Gardel  Biophysical Journal 
Tyrone J. Yacoub, Allam S. Reddy, Igal Szleifer  Biophysical Journal 
Integrin Molecular Tension within Motile Focal Adhesions
Volume 112, Issue 4, Pages (February 2017)
Small Angle X-Ray Scattering Studies and Modeling of Eudistylia vancouverii Chlorocruorin and Macrobdella decora Hemoglobin  Angelika Krebs, Helmut Durchschlag,
Ining Jou, Murugappan Muthukumar  Biophysical Journal 
Long-Range Nonanomalous Diffusion of Quantum Dot-Labeled Aquaporin-1 Water Channels in the Cell Plasma Membrane  Jonathan M. Crane, A.S. Verkman  Biophysical.
Christina Bergonzo, Thomas E. Cheatham  Biophysical Journal 
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Enrique M. De La Cruz, Jean-Louis Martiel, Laurent Blanchoin 
Subpiconewton Dynamic Force Spectroscopy Using Magnetic Tweezers
Ricksen S. Winardhi, Qingnan Tang, Jin Chen, Mingxi Yao, Jie Yan 
Volume 114, Issue 6, Pages (March 2018)
Martini Coarse-Grained Force Field: Extension to RNA
Ashley R. Carter, Yeonee Seol, Thomas T. Perkins  Biophysical Journal 
Simulating the Entropic Collapse of Coarse-Grained Chromosomes
Zackary N. Scholl, Weitao Yang, Piotr E. Marszalek  Biophysical Journal 
Quantitative Modeling and Optimization of Magnetic Tweezers
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
Presentation transcript:

Coexistence of Twisted, Plectonemic, and Melted DNA in Small Topological Domains  He Meng, Johan Bosman, Thijn van der Heijden, John van Noort  Biophysical Journal  Volume 106, Issue 5, Pages 1174-1181 (March 2014) DOI: 10.1016/j.bpj.2014.01.017 Copyright © 2014 Biophysical Society Terms and Conditions

Figure 1 Schematic illustration of the conformational changes of a DNA molecule in a magnetic tweezers setup (not to scale). A DNA molecule is tethered between a superparamagnetic bead and a glass surface. Force and torque on the DNA molecule are applied by an external pair of magnets (not shown) to the bead. Here, we consider the coexistence of three states: twisted, plectonemic, and melted DNA. To see this figure in color, go online. Biophysical Journal 2014 106, 1174-1181DOI: (10.1016/j.bpj.2014.01.017) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 2 Experimental data of the relative extension of a 7.0 kbps DNA molecule as a function of the total linking number density at various forces (circles). The relative extension as calculated by Eq. 9 is shown (lines). Calculations are based on the parameters summarized in Table S1 in the Supporting Material. (Solid lines) Constant melting energy of 1.6 kBT/bp. (Dashed line) Force-dependent melting energy (see Fig. S3 B), resulting in a better match with the experimental data at 0.6 pN. To see this figure in color, go online. Biophysical Journal 2014 106, 1174-1181DOI: (10.1016/j.bpj.2014.01.017) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 3 The force-linking number density phase diagram of a 7.0-kbps DNA molecule. Gradual transitions occur between twisted (t), plectonemic (p), and melted (m) DNA. (Blue, green, and red) The fraction of basepairs in t, p, and m, respectively. The fraction of melted bps was multiplied by 10 in all regions to optimize the contrast. (White region) Three-state coexistence phase. To see this figure in color, go online. Biophysical Journal 2014 106, 1174-1181DOI: (10.1016/j.bpj.2014.01.017) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 4 Calculations of the three-state coexistence in a 7.0-kbps DNA molecule at 0.7 pN and different linking number densities. (A) The distribution of basepairs in each state. (B) The distribution of linking numbers in each state. The sum of linking numbers converges to the total linking number ΔLk (shaded). (C) The torque present in the DNA molecule calculated between 0.1 and 2.5 pN. (D) The distribution of melted basepairs. (Error bars) Standard deviation. To see this figure in color, go online. Biophysical Journal 2014 106, 1174-1181DOI: (10.1016/j.bpj.2014.01.017) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 5 (A) Experimental data of the relative extension versus linking number density (red circles) at 0.7 pN for 2.4 kbps (left) and 7.0 kbps DNA (right). (Solid black line) Calculated median extension value. (Dashed lines) 68% range in extension. (B) Calculated extension distribution for 2.4 kbps (left) and 7.0 kbps DNA (right) at σtot = −0.04 (red) and σtot = +0.04 (black). Note the broad and asymmetric extension distribution compared to the Gaussian profile for negative and positive twist, respectively. To see this figure in color, go online. Biophysical Journal 2014 106, 1174-1181DOI: (10.1016/j.bpj.2014.01.017) Copyright © 2014 Biophysical Society Terms and Conditions

Figure 6 Constant force measurements at a linking number density σtot = −0.03. Three different forces are shown (top to bottom): 0.84, 0.74, and 0.65 pN. (Red) The 20 points of median filtered data, emphasizing the discrete transitions in extension. Histograms of the extension are shown on the right side of the time traces (black and red bars). The calculated extension distribution is superimposed on the histogram (solid black lines). The discrete levels are attributed to ∼400 bps of plectonemic DNA transferring back and forth into 380-bps twisted and 20-bps melted DNA. To see this figure in color, go online. Biophysical Journal 2014 106, 1174-1181DOI: (10.1016/j.bpj.2014.01.017) Copyright © 2014 Biophysical Society Terms and Conditions