Reversible Phosphorylation Subserves Robust Circadian Rhythms by Creating a Switch in Inactivating the Positive Element  Zhang Cheng, Feng Liu, Xiao-Peng.

Slides:



Advertisements
Similar presentations
Jingkui Wang, Marc Lefranc, Quentin Thommen  Biophysical Journal 
Advertisements

Negative Feedback Synchronizes Islets of Langerhans
Joshua D. Salvi, Dáibhid Ó Maoiléidigh, A.J. Hudspeth 
Koichiro Uriu, Luis G. Morelli  Biophysical Journal 
Volume 107, Issue 1, Pages (July 2014)
Zhanghan Wu, Jianhua Xing  Biophysical Journal 
Complex Metabolic Oscillations in Plants Forced by Harmonic Irradiance
Spontaneous Synchronization of Coupled Circadian Oscillators
Adam G. Larson, Nariman Naber, Roger Cooke, Edward Pate, Sarah E. Rice 
Volume 108, Issue 1, Pages (January 2015)
Volume 113, Issue 12, Pages (December 2017)
Magnetic Stimulation of One-Dimensional Neuronal Cultures
Bhaswar Ghosh, Uddipan Sarma, Victor Sourjik, Stefan Legewie 
Volume 96, Issue 5, Pages (March 2009)
A Theoretical Model of Slow Wave Regulation Using Voltage-Dependent Synthesis of Inositol 1,4,5-Trisphosphate  Mohammad S. Imtiaz, David W. Smith, Dirk.
Volume 45, Issue 3, Pages (February 2012)
Jae Kyoung Kim, Krešimir Josić, Matthew R. Bennett  Biophysical Journal 
Jordi Soriano, Sten Rüdiger, Pramod Pullarkat, Albrecht Ott 
Dynamical Scenarios for Chromosome Bi-orientation
Phase Transitions in Biological Systems with Many Components
Impulse Control: Temporal Dynamics in Gene Transcription
Volume 26, Issue 8, Pages (April 2016)
Shuhei S. Sugai, Koji L. Ode, Hiroki R. Ueda  Cell Reports 
Negative Feedback Synchronizes Islets of Langerhans
Marcelo Behar, Alexander Hoffmann  Biophysical Journal 
Michał Komorowski, Jacek Miękisz, Michael P.H. Stumpf 
Mechanistically Consistent Reduced Models of Synthetic Gene Networks
Landscape, Flux, Correlation, Resonance, Coherence, Stability, and Key Network Wirings of Stochastic Circadian Oscillation  Chunhe Li, Erkang Wang, Jin.
Gerald Offer, K.W. Ranatunga  Biophysical Journal 
Christina Vasalou, Erik D. Herzog, Michael A. Henson 
Taeyoon Kim, Margaret L. Gardel, Ed Munro  Biophysical Journal 
Fiber-Dependent and -Independent Toxicity of Islet Amyloid Polypeptide
Francis D. Appling, Aaron L. Lucius, David A. Schneider 
Mathematical Model of the Drosophila Circadian Clock: Loop Regulation and Transcriptional Integration  Hassan M. Fathallah-Shaykh, Jerry L. Bona, Sebastian.
Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 
Mathematical Models of Protein Kinase Signal Transduction
Florian Hinzpeter, Ulrich Gerland, Filipe Tostevin  Biophysical Journal 
Ingunn W. Jolma, Xiao Yu Ni, Ludger Rensing, Peter Ruoff 
Molecular Bases for Circadian Clocks
Volume 98, Issue 1, Pages 1-11 (January 2010)
Intracellular Encoding of Spatiotemporal Guidance Cues in a Self-Organizing Signaling System for Chemotaxis in Dictyostelium Cells  Tatsuo Shibata, Masatoshi.
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans
Benjamin Pfeuty, Quentin Thommen, Marc Lefranc  Biophysical Journal 
Volume 6, Issue 4, Pages e3 (April 2018)
Volume 102, Issue 1, Pages (January 2012)
Ankit Gupta, Benjamin Hepp, Mustafa Khammash  Cell Systems 
Using a Single Fluorescent Reporter Gene to Infer Half-Life of Extrinsic Noise and Other Parameters of Gene Expression  Michał Komorowski, Bärbel Finkenstädt,
Volume 15, Issue 11, Pages (June 2016)
Jonathan E. Hiorns, Oliver E. Jensen, Bindi S. Brook 
Mathematical Modeling of the Heat-Shock Response in HeLa Cells
Theodore R. Rieger, Richard I. Morimoto, Vassily Hatzimanikatis 
R. Stehle, M. Krüger, G. Pfitzer  Biophysical Journal 
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Andrew E. Blanchard, Chen Liao, Ting Lu  Biophysical Journal 
Phosphatase Specificity and Pathway Insulation in Signaling Networks
Model of Bacterial Band Formation in Aerotaxis
Tuning Bulk Electrostatics to Regulate Protein Function
Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 
Volume 99, Issue 11, Pages (December 2010)
Stochastic Pacing Inhibits Spatially Discordant Cardiac Alternans
Volume 104, Issue 8, Pages (April 2013)
Yongli Zhang, Junyi Jiao, Aleksander A. Rebane  Biophysical Journal 
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures
Volume 99, Issue 11, Pages (December 2010)
Stable Stochastic Dynamics in Yeast Cell Cycle
Volume 27, Issue 17, Pages e2 (September 2017)
Ping Liu, Ioannis G. Kevrekidis, Stanislav Y. Shvartsman 
Jérémie Barral, Frank Jülicher, Pascal Martin  Biophysical Journal 
Shuai Zeng, Bing Li, Shaoqun Zeng, Shangbin Chen  Biophysical Journal 
Presentation transcript:

Reversible Phosphorylation Subserves Robust Circadian Rhythms by Creating a Switch in Inactivating the Positive Element  Zhang Cheng, Feng Liu, Xiao-Peng Zhang, Wei Wang  Biophysical Journal  Volume 97, Issue 11, Pages 2867-2875 (December 2009) DOI: 10.1016/j.bpj.2009.09.008 Copyright © 2009 Biophysical Society Terms and Conditions

Figure 1 Schematic depiction of the model. The transcription factor WCC activates the frq transcription, whereas FRQ protein suppresses the activity of WCC by promoting its phosphorylation. The phosphorylation and dephosphorylation of WCC are separately catalyzed by the kinase CKI/II and the phosphatase PP2A. Biophysical Journal 2009 97, 2867-2875DOI: (10.1016/j.bpj.2009.09.008) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 2 Robust circadian oscillations. Temporal evolution of the levels of frq mRNA (black line), FRQ protein (pink line), and WCC∗ (blue line) in the absence (A) or presence (B) of intrinsic noise or in response to light/dark cycles without noise (C). The green line in panel C shows the time course of the maximum frq transcription rate k1. (D) The period and amplitude of oscillations of FRQ level when each of nine parameters is increased or decreased by 15% with respect to the standard parameter set. Clearly, the clock is robust to variations in parameter values. Biophysical Journal 2009 97, 2867-2875DOI: (10.1016/j.bpj.2009.09.008) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 3 Parameter sensitivity analysis. The sensitivity of the period length to changes in parameter values is indicated by open bars, which are arranged on abscissa in descending order of sensitivity value. Also shown is the sensitivity of oscillation amplitudes to variations in the same parameters, which is characterized by the bars with distinct field patterns for different clock components. Biophysical Journal 2009 97, 2867-2875DOI: (10.1016/j.bpj.2009.09.008) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 4 Dependence of circadian rhythms on the Hill coefficient n and the relative Michaelis constant km. (A) Bifurcation diagram of FRQ level as a function of n. When n < 2, the line shows its steady-state value; when n ≥ 2, the two solid lines represent the maximum and minimum values of oscillations and the dashed line shows the corresponding period length, whereas the dotted line shows the unstable steady-state value. The Hopf bifurcation point is marked by the solid circle. (B) Two-parameter bifurcation diagram. The steady state is separated from the oscillatory state by the solid line. The region enclosed by two dash-dotted lines corresponds to the oscillations with the period length 20 ∼ 24 h and the phase difference between the peak levels of frq mRNA and FRQ 4 ∼ 6 h. Biophysical Journal 2009 97, 2867-2875DOI: (10.1016/j.bpj.2009.09.008) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 5 Effects induced by zero-order ultrasensitivity. (A) The fraction of active WCC in the steady state as a function of FRQ level for different relative Michaelis constants: km = 0.01 (black), 0.1 (blue), 1 (green), or 10 (red). (B) Reaction rates for reversible phosphorylation of WCC∗. Solid lines represent the phosphorylation rate for different concentrations of FRQ level (8, 9, and 10 nM, from top to bottom); dashed line describes the dephosphorylation rate, which is independent of FRQ level. The marked points correspond to the steady states in panel A. The oscillations of frq mRNA (black), FRQ (pink), and WCC∗ (blue) levels during one circadian cycle in the absence (C) or presence of noise (with Ω = 10) (D). The pink dashed lines represent the threshold value of FRQ level. The dotted line 1 denotes the time when FRQ level crosses the threshold from above, whereas line 2 denotes the time when WCC∗ level crosses a small value such as 0.1 from above. Biophysical Journal 2009 97, 2867-2875DOI: (10.1016/j.bpj.2009.09.008) Copyright © 2009 Biophysical Society Terms and Conditions

Figure 6 Robustness of circadian oscillations to molecular noise. (A–C) Oscillations of the amounts of frq mRNA (solid lines) and FRQ (dashed lines) with different Ω: 100 (A), 10 (B), and 1 (C). (D–F) The power spectrum density (PSD) of FRQ amount corresponding to the above panels. The peak frequency is marked in the panels, and the corresponding period is 22.22 h (D), 24.15 h (E), and 30.49 h (F), respectively. Biophysical Journal 2009 97, 2867-2875DOI: (10.1016/j.bpj.2009.09.008) Copyright © 2009 Biophysical Society Terms and Conditions