THE UNIT CIRCLE.

Slides:



Advertisements
Similar presentations
Trigonometric Equations I
Advertisements

SINE AND COSINE FUNCTIONS
THE UNIT CIRCLE 6.1 Let’s take notes and fill out the Blank Unit Circle as we go along.
TRIGONOMETRY FUNCTIONS
R I A N G L E. hypotenuse leg In a right triangle, the shorter sides are called legs and the longest side (which is the one opposite the right angle)
DOUBLE-ANGLE AND HALF-ANGLE FORMULAS
(r,  ). You are familiar with plotting with a rectangular coordinate system. We are going to look at a new coordinate system called the polar coordinate.
SPECIAL USING TRIANGLES Computing the Values of Trig Functions of Acute Angles.
SOLVING LINEAR EQUATIONS. If we have a linear equation we can “manipulate” it to get it in this form. We just need to make sure that whatever we do preserves.
TRIGONOMETRIC IDENTITIES
VECTORS. A vector is a quantity that has both magnitude and direction. It is represented by an arrow. The length of the vector represents the magnitude.
Lesson 4.2. A circle with center at (0, 0) and radius 1 is called a unit circle. The equation of this circle would be (1,0) (0,1) (0,-1) (-1,0)
Our goal in todays lesson will be to build the parts of this unit circle. You will then want to get it memorized because you will use many facts from.
Lesson 4.2. A circle with center at (0, 0) and radius 1 is called a unit circle. The equation of this circle would be (1,0) (0,1) (0,-1) (-1,0)
Library of Functions You should be familiar with the shapes of these basic functions. We'll learn them in this section.
SEQUENCES A sequence is a function whose domain in the set of positive integers. So if I gave you a function but limited the domain to the set of positive.
Sum and Difference Formulas. Often you will have the cosine of the sum or difference of two angles. We are going to use formulas for this to express in.
Solving Quadratics and Exact Values. Solving Quadratic Equations by Factoring Let's solve the equation First you need to get it in what we call "quadratic.
Surd or Radical Equations. To solve an equation with a surd First isolate the surd This means to get any terms not under the square root on the other.
The Unit Circle M 140 Precalculus V. J. Motto. Remembering the “special” right triangles from geometry. The first one is formed by drawing the diagonal.
5.3 The Unit Circle. A circle with center at (0, 0) and radius 1 is called a unit circle. The equation of this circle would be So points on this circle.
Trigonometric Functions: The Unit Circle Section 4.2.
Remainder and Factor Theorems. REMAINDER THEOREM Let f be a polynomial function. If f (x) is divided by x – c, then the remainder is f (c). Let’s look.
1.6 Trigonometric Functions: The Unit circle
Solving Trigonometric Equations Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 x y π π 6 -7 π 6 π 6.
We’ve already graphed equations. We can graph functions in the same way. The thing to remember is that on the graph the f(x) or function value is the.
Definitions of Trigonometric functions Let t be a real number and let (x,y) be the point on the unit circle corresponding to t Sin t = ycsc t = 1/y.
Do Now: given the equation of a circle x 2 + y 2 = 1. Write the center and radius. Aim: What is the unit circle? HW: p.366 # 4,6,8,10,18,20 p.367 # 2,4,6,8.
Trigonometric Functions: The Unit Circle  Identify a unit circle and describe its relationship to real numbers.  Evaluate trigonometric functions.
TRIGONOMETRIC IDENTITIES
10-7 (r, ).
Polynomial Functions.
Systems of Inequalities.
RATIONAL FUNCTIONS II GRAPHING RATIONAL FUNCTIONS.
THE DOT PRODUCT.
Matrix Algebra.
THE UNIT CIRCLE.
Relations And Functions.
THE UNIT CIRCLE.
THE UNIT CIRCLE.
(r, ).
Absolute Value.
VECTORS.
Graphing Techniques: Transformations Transformations Transformations
Polynomial Functions.
THE UNIT CIRCLE SECTION 4.2.
INVERSE FUNCTIONS.
THE UNIT CIRCLE.
THE UNIT CIRCLE.
Operations on Functions
THE UNIT CIRCLE.
Relations And Functions.
INVERSE FUNCTIONS Chapter 1.5 page 120.
Polynomial Functions.
TRIGOMOMETRY RIGHT R I A N G L E.
Relations And Functions.
THE UNIT CIRCLE.
THE UNIT CIRCLE.
Solving Quadratic Equations.
INVERSE FUNCTIONS.
Graphing Techniques: Transformations Transformations: Review
Symmetric about the y axis
Relations and functions
exponential functions
Relations And Functions.
Operations on Functions
Relations And Functions.
Symmetric about the y axis
The Complex Plane; DeMoivre's Theorem
Graphing Techniques: Transformations Transformations: Review
Presentation transcript:

THE UNIT CIRCLE

A circle with center at (0, 0) and radius 1 is called a unit circle. The equation of this circle would be (0,1) (-1,0) (1,0) (0,-1) So points on this circle must satisfy this equation.

Let's pick a point on the circle Let's pick a point on the circle. We'll choose a point where the x is 1/2. If the x is 1/2, what is the y value? You can see there are two y values. They can be found by putting 1/2 into the equation for x and solving for y. x = 1/2 (0,1) (-1,0) (1,0) We'll look at a larger version of this and make a right triangle. (0,-1)

We know all of the sides of this triangle We know all of the sides of this triangle. The bottom leg is just the x value of the point, the other leg is just the y value and the hypotenuse is always 1 because it is a radius of the circle. (0,1) (-1,0) (1,0)  (0,-1) Notice the sine is just the y value of the unit circle point and the cosine is just the x value.

So if I want a trig function for  whose terminal side contains a point on the unit circle, the y value is the sine, the x value is the cosine and y/x is the tangent. (0,1) (-1,0) (1,0)  (0,-1) We divide the unit circle into various pieces and learn the point values so we can then from memory find trig functions.

Here is the unit circle divided into 8 pieces Here is the unit circle divided into 8 pieces. Can you figure out how many degrees are in each division? These are easy to memorize since they all have the same value with different signs depending on the quadrant. 90° 135° 45° 180° 45° 0° 225° 315° 270° We can label this all the way around with how many degrees an angle would be and the point on the unit circle that corresponds with the terminal side of the angle. We could then find any of the trig functions.

Can you figure out what these angles would be in radians? 90° 135° 45° 180° 0° 225° 315° 270° The circle is 2 all the way around so half way is . The upper half is divided into 4 pieces so each piece is /4.

You'll need to memorize these too but you can see the pattern. Here is the unit circle divided into 12 pieces. Can you figure out how many degrees are in each division? You'll need to memorize these too but you can see the pattern. 90° 120° 60° 150° 30° 180° 30° 0° 210° 330° 240° 300° 270° We can again label the points on the circle and the sine is the y value, the cosine is the x value and the tangent is y over x.

We'll see them all put together on the unit circle on the next screen. Can you figure out what the angles would be in radians? We'll see them all put together on the unit circle on the next screen. 90° 120° 60° 150° 30° 180° 30° 0° 210° 330° 240° 300° 270° It is still  halfway around the circle and the upper half is divided into 6 pieces so each piece is /6.

You should memorize this You should memorize this. This is a great reference because you can figure out the trig functions of all these angles quickly.

Let’s think about the function f() = sin  What is the domain? (remember domain means the “legal” things you can put in for  ). You can put in anything you want so the domain is all real numbers. What is the range? (remember range means what you get out of the function). The range is: -1  sin   1 (0, 1) Let’s look at the unit circle to answer that. What is the lowest and highest value you’d ever get for sine? (sine is the y value so what is the lowest and highest y value?) (1, 0) (-1, 0) (0, -1)

Let’s think about the function f() = cos  What is the domain? (remember domain means the “legal” things you can put in for  ). You can put in anything you want so the domain is all real numbers. What is the range? (remember range means what you get out of the function). The range is: -1  cos   1 (0, 1) Let’s look at the unit circle to answer that. What is the lowest and highest value you’d ever get for cosine? (cosine is the x value so what is the lowest and highest x value?) (-1, 0) (1, 0) (0, -1)

Let’s think about the function f() = tan  What is the domain? (remember domain means the “legal” things you can put in for  ). Tangent is y/x so we will have an “illegal” if x is 0. x is 0 at 90° (or /2) or any odd multiple of 90° The domain then is all real numbers except odd multiples of 90° or  /2. What is the range? (remember range means what you get out of the function). If we take any y/x, we could end up getting any value so range is all real numbers.

Let’s think about the function f() = csc  What is the domain? Since this is 1/sin , we’ll have trouble if sin  = 0. That will happen at 0 and multiples of  (or 180°). The domain then is all real numbers except multiples of . Since the range is: -1  sin   1, sine will be fractions less than one. If you take their reciprocal you will get things greater than 1. The range then is all real numbers greater than or equal to 1 or all real numbers less than or equal to -1. What is the range?

Let’s think about the function f() = sec  What is the domain? Since this is 1/cos , we’ll have trouble if cos  = 0. That will happen at odd multiples of /2 (or 90°). The domain then is all real numbers except odd multiples of /2. Since the range is: -1  cos   1, cosine will be fractions less than one. If you take their reciprocal you will get things greater than 1. The range then is all real numbers greater than or equal to 1 or all real numbers less than or equal to -1. What is the range?

Let’s think about the function f() = cot  What is the domain? Since this is cos /sin , we’ll have trouble if sin  = 0. That will happen at 0 and multiples of  (or 180°). The domain then is all real numbers except multiples of . What is the range? Like the tangent, the range will be all real numbers. The domains and ranges of the trig functions are summarized in your book in Table 6 on page 542. You need to know these. If you know the unit circle, you can figure these out.

Look at the unit circle and determine sin 420°. In fact sin 780° = sin 60° since that is just another 360° beyond 420°. Because the sine values are equal for coterminal angles that are multiples of 360° added to an angle, we say that the sine is periodic with a period of 360° or 2. All the way around is 360° so we’ll need more than that. We see that it will be the same as sin 60° since they are coterminal angles. So sin 420° = sin 60°.

The cosine is also periodic with a period of 360° or 2. Let's label the unit circle with values of the tangent. (Remember this is just y/x) We see that they repeat every  so the tangent’s period is .

1 PERIODIC PROPERTIES sin( + 2) = sin  cosec( + 2) = cosec  Reciprocal functions have the same period. PERIODIC PROPERTIES sin( + 2) = sin  cosec( + 2) = cosec  cos( + 2) = cos  sec( + 2) = sec  tan( + ) = tan  cot( + ) = cot  This would have the same value as 1 (you can count around on unit circle or subtract the period twice.)

Now let’s look at the unit circle to compare trig functions of positive vs. negative angles. Remember negative angle means to go clockwise

Recall from College Algebra that if we put a negative in the function and get the original back it is an even function.

Recall from College Algebra that if we put a negative in the function and get the negative of the function back it is an odd function.

sin(-  ) = - sin  (odd) cosec(-  ) = - cosec  (odd) If a function is even, its reciprocal function will be also. If a function is odd its reciprocal will be also. EVEN-ODD PROPERTIES sin(-  ) = - sin  (odd) cosec(-  ) = - cosec  (odd) cos(-  ) = cos  (even) sec(-  ) = sec  (even) tan(-  ) = - tan  (odd) cot(-  ) = - cot  (odd)

Acknowledgement I wish to thank Shawna Haider from Salt Lake Community College, Utah USA for her hard work in creating this PowerPoint. www.slcc.edu Shawna has kindly given permission for this resource to be downloaded from www.mathxtc.com and for it to be modified to suit the Western Australian Mathematics Curriculum. Stephen Corcoran Head of Mathematics St Stephen’s School – Carramar www.ststephens.wa.edu.au