Activation records Programming Language Design and Implementation (4th Edition) by T. Pratt and M. Zelkowitz Prentice Hall, 2001 Section 9.1-9.2.

Slides:



Advertisements
Similar presentations
CSI 3120, Implementing subprograms, page 1 Implementing subprograms The environment in block-structured languages The structure of the activation stack.
Advertisements

Implementing Subprograms
(1) ICS 313: Programming Language Theory Chapter 10: Implementing Subprograms.
Chapter 10 Implementing Subprograms. Copyright © 2012 Addison- Wesley. All rights reserved. 1-2 Chapter 10 Topics The General Semantics of Calls and Returns.
ISBN Chapter 10 Implementing Subprograms.
1 Storage Registers vs. memory Access to registers is much faster than access to memory Goal: store as much data as possible in registers Limitations/considerations:
1 Chapter 7: Runtime Environments. int * larger (int a, int b) { if (a > b) return &a; //wrong else return &b; //wrong } int * larger (int *a, int *b)
ISBN Chapter 10 Implementing Subprograms.
ISBN Chapter 10 Implementing Subprograms.
Semantics of Calls and Returns
PZ09A Programming Language design and Implementation -4th Edition Copyright©Prentice Hall, PZ09A - Activation records Programming Language Design.
The environment of the computation Declarations introduce names that denote entities. At execution-time, entities are bound to values or to locations:
Chapter 9: Subprogram Control
ISBN Chapter 10 Implementing Subprograms –Semantics of Calls and Returns –Implementing “Simple” Subprograms –Implementing Subprograms with.
1 CSCI 360 Survey Of Programming Languages 9 – Implementing Subprograms Spring, 2008 Doug L Hoffman, PhD.
Chapter 10 Implementing Subprograms. Copyright © 2007 Addison-Wesley. All rights reserved. 1–2 Semantics of Call and Return The subprogram call and return.
1 Contents. 2 Run-Time Storage Organization 3 Static Allocation In many early languages, notably assembly and FORTRAN, all storage allocation is static.
Runtime Environments What is in the memory? Runtime Environment2 Outline Memory organization during program execution Static runtime environments.
CS 2104 Prog. Lang. Concepts Subprograms
Runtime Environments Compiler Construction Chapter 7.
Names and Scope. Scope Suppose that a name is used many times for different entities in text of the program, or in the course of execution. When the name.
Compiler Construction
Chapter 10 Implementing Subprograms. Copyright © 2012 Addison-Wesley. All rights reserved.1-2 Chapter 10 Topics The General Semantics of Calls and Returns.
1 Copyright © 1998 by Addison Wesley Longman, Inc. Chapter 9 Def: The subprogram call and return operations of a language are together called its subprogram.
ISBN Chapter 10 Implementing Subprograms.
Implementing Subprograms What actions must take place when subprograms are called and when they terminate? –calling a subprogram has several associated.
A.Alzubair Hassan Abdullah Dept. Computer Sciences Kassala University A.Alzubair Hassan Abdullah Dept. Computer Sciences Kassala University NESTED SUBPROGRAMS.
Subprograms - implementation
CSC 8505 Compiler Construction Runtime Environments.
1 Chapter 10 © 2002 by Addison Wesley Longman, Inc The General Semantics of Calls and Returns - Def: The subprogram call and return operations of.
RUNTIME ENVIRONMENT AND VARIABLE BINDINGS How to manage local variables.
Chapter 10 Implementing Subprograms. Copyright © 2012 Addison-Wesley. All rights reserved.1-2 Chapter 10 Topics The General Semantics of Calls and Returns.
10-1 Chapter 10: Implementing Subprograms The General Semantics of Calls and Returns Implementing “Simple” Subprograms Implementing Subprograms with Stack-Dynamic.
ISBN Chapter 10 Implementing Subprograms.
Implementing Subprograms
PZ09A Programming Language design and Implementation -4th Edition Copyright©Prentice Hall, PZ09A - Activation records Programming Language Design.
1 Activation records Programming Language Design and Implementation (4th Edition) by T. Pratt and M. Zelkowitz Prentice Hall, 2001 Section
Subprograms - implementation. Calling a subprogram  transferring control to a subprogram: save conditions in calling program pass parameters allocate.
ISBN Chapter 10 Implementing Subprograms.
1 Compiler Construction Run-time Environments,. 2 Run-Time Environments (Chapter 7) Continued: Access to No-local Names.
ISBN Chapter 10 Implementing Subprograms.
Code Generation Instruction Selection Higher level instruction -> Low level instruction Register Allocation Which register to assign to hold which items?
Implementing Subprograms
Chapter 10 : Implementing Subprograms
Implementing Subprograms Chapter 10
Implementing Subprograms
Implementing Subprograms
COMPILERS Activation Records
Implementing Subprograms
The Procedure Abstraction Part IV: Allocating Storage & Establishing Addressability Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights.
Implementing Subprograms
Chapter 10: Implementing Subprograms Sangho Ha
Implementing Subprograms
Implementing Subprograms
CSC 533: Programming Languages Spring 2015
Implementing Subprograms
PZ09A - Activation records
Implementing Subprograms
Run Time Environments 薛智文
Runtime Environments What is in the memory?.
Where is all the knowledge we lost with information? T. S. Eliot
RUN-TIME STORAGE Chuen-Liang Chen Department of Computer Science
Activation records Programming Language Design and Implementation (4th Edition) by T. Pratt and M. Zelkowitz Prentice Hall, 2001 Section
CSC 533: Programming Languages Spring 2018
Implementing Subprograms
CSC 533: Programming Languages Spring 2019
Activation records Programming Language Design and Implementation (4th Edition) by T. Pratt and M. Zelkowitz Prentice Hall, 2001 Section
Activation records Programming Language Design and Implementation (4th Edition) by T. Pratt and M. Zelkowitz Prentice Hall, 2001 Section
Implementing Subprograms
Chapter 10 Def: The subprogram call and return operations of
Presentation transcript:

Activation records Programming Language Design and Implementation (4th Edition) by T. Pratt and M. Zelkowitz Prentice Hall, 2001 Section 9.1-9.2

Subprogram Simple Call-Return Subprograms - Simple copy as Macros - FORTRAN Types - Current-instruction pointer (CIP) - Current-environment pointers(CEP)  간단하게 설명 Recursive Call

Subprogram control Remember that data storage for subprograms is in an activation record. var X: integer; X is of type integer. L-value of X is some specific offset in an activation record. Goal is to look at locating activation record for P. Given an expression: X = Y + Z 1. Locate activation record containing Y. 2. Get L-value of Y from fixed location in activation record. 3. Repeat process for Z and then X.

Scope rules Scope rules: The scope of a variable are the set of statements where the variable may be accessed (i.e., named) in a program. Static scope: Scope is dependent on the syntax of the program. Dynamic scope: Scope is determined by the execution of the program. Static nested scope: A variable is accessible in the procedure it is declared in, and all procedures internal to that procedure, except a new declaration of that variable name in an internal procedure will eliminate the new variable's scope from the scope of the outer variable. A variable declared in a procedure is local in that procedure; otherwise it is global.

Review of scope rules Q and T are declarations of procedures within P, so scope of names Q and T is same as scope of declaration a. R and S are declarations of procedures in Q. U is a declaration of a procedure in T. Storage managed by adding activation records, when procedure invoked, on a stack.

Activation record stack Problem is: How to manage this execution stack? Two pointers perform this function: 1. Dynamic link pointer points to activation record that called (invoked) the new activation record. It is used for returning from the procedure to the calling procedure. 2. Static link pointer points to the activation record that is global to the current activation record (i.e., points to the activation record of the procedure containing the declaration of this procedure).

Activation record structure

Example of activation record stack For following examples, assume following static program and stack:

Activation record example 1 Example 1. In R: C := B+A;  C local, A and B global For each variable, get pointer to proper activation record. Assume AR is current activation record pointer (R). 1. B is one level back: - Follow AR.SL to get AR containing B. - Get R-value of B from fixed offset L-value 2. A is two levels back: - Follow (AR.SL).SL to get activation record containing A. - Add R-value of A from fixed offset L-value 3. C is local. AR points to correct activation record. - Store sum of B+A into L-value of C

Activation record example 2 Example 2. Execution in procedure Q: A := B  B is local, A global Assume AR is current activation record pointer (Q) 1. B is now local. AR points to activation record - Get R-value from local activation record 2. A is now one level back AR.SL is activation record of P - Store R-value of B into L-value of A Compiler knows static structure, so it can generate the number of static link chains it has to access in order to access the correct activation record containing the data object. This is a compile time, not a runtime calculation.

Use of displays Problem with static links: Many links to follow if deeply nested. (But how common is that?) Use of displays reduces access always to 2 instructions: 1. Access Display[I] = Act. Rec. pointer at level I 2. Get L-value of variable (fixed offset in act. rec.) Activation record structure:

Display for previous example

Accessing variables Data access is always a 2-step process: 1. [If non-local] Load Reg1, Display[I] 2. [For all] Load Reg2, L-value offset (Reg1) Size of activation record for a procedure: Housekeeping storage (Fixed size = K): - Dynamic Link - Return address (in source program) - End of activation record - Registers Display Local data storage

Creating activation records To create new activation record (e.g., P calls Q): Assume have pointer to P's activation record. 1. Get EndStack pointer from P's activation record. This is start of Q's activation record. 2. Add K+NewDisplaySize+LocalStorageSize. 3. Save as new EndStack in Q's activation record. 4. Set DL in Q to point to old activation record (P). 5. Fill in housekeeping in Q's activation record. 6. Set up new display in Q's activation record. To create a new display to call from level I to level J: Copy Display[1..J-1] from calling activation record. Add new activation record pointer as Display[J]. To return: Use dynamic link in current activation record to get old activation record. Use return address in housekeeping area to jump to.

Blocks in C Blocks in C are handled as union record types: P() { int I; {int J; . . . } { int K; int L; J and K cannot exist at the same time, so use the same space for them.

Optimizations in activation record design 1. Instead of displays, use M registers only: E.g., M1, M2, M3, M4 only. What if a procedure is nested 5 deep? 1. Illegal program? 2. Spill to displays only in this case? 2. Note that C was designed for efficient execution: No nested procedures No need for displays or static links But needs dynamic links.

C++ storage access General properties 1. Procedure allocations follow general rules of C Allocate activation records on a stack No need for static links, but need dynamic links 2. Class variables are allocated like structs in C. [Structs in C++ can have function members. Functions in structs are by default public, while in a class are by default private.] 3. Static functions are not represented in runtime activation records 4. Objects requiring dynamic binding (i.e., virtual functions) are present in runtime activation records

Sample C++ allocation example class A { public: int x; virtual void p() {...}; void q() {...p()...}; protected: int y; private: int Z; ...} class B:A { public: int w; void r() {...p()...}; private: int v; virtual void s() {...};

Symbol table for example Name Type Access Mode Location X var public static A(1) P func public dynamic A(2) Q func public static addr of proc Y var protected static A(3) Z var private static A(4) W var public static B(5) R func public static Addr of proc V var private static B(6) S func private dynamic B(7)

Class instance records at runtime X: R-value X: R-value P: Addr of P in B P: Addr of P in A Y: R-value Y: R-value Z: R-value Z: R-value W: R-value V: R-value Class A S: Addr of S in B Class B

추가 FORTRAN의 COMMON문 - 간단히 설명 Function parameter에서 scope rule - 환경 접근방법 간단히 설명