Volume 13, Issue 10, Pages (December 2015)

Slides:



Advertisements
Similar presentations
Timing and Specificity of Feed-Forward Inhibition within the LGN
Advertisements

Volume 49, Issue 4, Pages (February 2006)
Volume 79, Issue 3, Pages (August 2013)
Polarity of Long-Term Synaptic Gain Change Is Related to Postsynaptic Spike Firing at a Cerebellar Inhibitory Synapse  Carlos D Aizenman, Paul B Manis,
Presynaptic Self-Depression at Developing Neocortical Synapses
Yan-You Huang, Eric R Kandel  Neuron 
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Spike-Timing-Dependent Potentiation of Sensory Surround in the Somatosensory Cortex Is Facilitated by Deprivation-Mediated Disinhibition  Frédéric Gambino,
Yukio Nishimura, Steve I. Perlmutter, Ryan W. Eaton, Eberhard E. Fetz 
The Generation of Direction Selectivity in the Auditory System
Volume 18, Issue 11, Pages (March 2017)
Volume 13, Issue 4, Pages (October 2015)
Nucleus Accumbens Neurons Are Innately Tuned for Rewarding and Aversive Taste Stimuli, Encode Their Predictors, and Are Linked to Motor Output  Mitchell.
Michiel Coesmans, John T. Weber, Chris I. De Zeeuw, Christian Hansel 
Volume 15, Issue 11, Pages (June 2016)
Threshold Behavior in the Initiation of Hippocampal Population Bursts
Pauses in Cholinergic Interneuron Activity Are Driven by Excitatory Input and Delayed Rectification, with Dopamine Modulation  Yan-Feng Zhang, John N.J.
Jianrong Tang, John A. Dani  Neuron 
Volume 12, Issue 5, Pages (August 2015)
Leslie R. Whitaker, Mickael Degoulet, Hitoshi Morikawa  Neuron 
Volume 98, Issue 1, Pages e10 (April 2018)
Hyoung F. Kim, Hidetoshi Amita, Okihide Hikosaka  Neuron 
Volume 23, Issue 1, Pages (April 2018)
A Cooperative Mechanism Involving Ca2+-Permeable AMPA Receptors and Retrograde Activation of GABAB Receptors in Interpeduncular Nucleus Plasticity  Peter.
Spike Timing-Dependent LTP/LTD Mediates Visual Experience-Dependent Plasticity in a Developing Retinotectal System  Yangling Mu, Mu-ming Poo  Neuron 
Cell-Specific Retrograde Signals Mediate Antiparallel Effects of Angiotensin II on Osmoreceptor Afferents to Vasopressin and Oxytocin Neurons  Tevye J.
A Pixel-Encoder Retinal Ganglion Cell with Spatially Offset Excitatory and Inhibitory Receptive Fields  Keith P. Johnson, Lei Zhao, Daniel Kerschensteiner 
Volume 90, Issue 5, Pages (June 2016)
SK2 Channel Modulation Contributes to Compartment-Specific Dendritic Plasticity in Cerebellar Purkinje Cells  Gen Ohtsuki, Claire Piochon, John P. Adelman,
Volume 68, Issue 5, Pages (December 2010)
Volume 19, Issue 3, Pages (April 2017)
Anatol C Kreitzer, Adam G Carter, Wade G Regehr  Neuron 
Anubhuti Goel, Dean V. Buonomano  Neuron 
Extinction of Cocaine Self-Administration Reveals Functionally and Temporally Distinct Dopaminergic Signals in the Nucleus Accumbens  Garret D. Stuber,
Volume 16, Issue 2, Pages (July 2016)
Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens  Immani Swapna, Brian Bondy, Hitoshi Morikawa  Cell.
Corey Baimel, Benjamin K. Lau, Min Qiao, Stephanie L. Borgland 
Volume 22, Issue 10, Pages (March 2018)
Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors  Shannon J. Moore, Donald C. Cooper,
Volume 20, Issue 13, Pages (September 2017)
Volume 94, Issue 2, Pages e4 (April 2017)
Volume 13, Issue 9, Pages (December 2015)
Xiangying Meng, Joseph P.Y. Kao, Hey-Kyoung Lee, Patrick O. Kanold 
Volume 97, Issue 3, Pages e5 (February 2018)
Respiratory Rhythm Neuron Volume 34, Issue 5, Pages (May 2002)
Volume 78, Issue 6, Pages (June 2013)
Volume 8, Issue 2, Pages (July 2014)
Cocaine Inhibition of Synaptic Transmission in the Ventral Pallidum Is Pathway-Specific and Mediated by Serotonin  Aya Matsui, Veronica A. Alvarez  Cell.
Huibert D Mansvelder, Daniel S McGehee  Neuron 
Volume 74, Issue 3, Pages (May 2012)
Volume 26, Issue 6, Pages e3 (February 2019)
Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus  Li Zhou, Ming-Zhe Liu, Qing.
Serotonergic Modulation of Sensory Representation in a Central Multisensory Circuit Is Pathway Specific  Zheng-Quan Tang, Laurence O. Trussell  Cell Reports 
Stephanie Rudolph, Linda Overstreet-Wadiche, Jacques I. Wadiche  Neuron 
Kristina Valentinova, Manuel Mameli  Cell Reports 
Strong G-Protein-Mediated Inhibition of Sodium Channels
Dopamine-Dependent Interactions between Limbic and Prefrontal Cortical Plasticity in the Nucleus Accumbens: Disruption by Cocaine Sensitization  Yukiori.
Metaplasticity of Hypothalamic Synapses following In Vivo Challenge
Volume 17, Issue 11, Pages (December 2016)
Xiaowei Chen, Nathalie L. Rochefort, Bert Sakmann, Arthur Konnerth 
Burst-Timing-Dependent Plasticity of NMDA Receptor-Mediated Transmission in Midbrain Dopamine Neurons  Mark T. Harnett, Brian E. Bernier, Kee-Chan Ahn,
Anubhuti Goel, Dean V. Buonomano  Neuron 
Alexandre Mathy, Beverley A. Clark, Michael Häusser  Neuron 
Volume 27, Issue 1, Pages e6 (April 2019)
Multisensory Integration in the Mouse Striatum
Volume 50, Issue 6, Pages (June 2006)
Matthew T. Rich, Yanhua H. Huang, Mary M. Torregrossa  Cell Reports 
Volume 54, Issue 1, Pages (April 2007)
Volume 19, Issue 12, Pages (June 2017)
Gwendolyn G. Calhoon, Patricio O’Donnell  Neuron 
Presentation transcript:

Volume 13, Issue 10, Pages 2287-2296 (December 2015) Ventral Subiculum Stimulation Promotes Persistent Hyperactivity of Dopamine Neurons and Facilitates Behavioral Effects of Cocaine  Christelle Glangetas, Giulia R. Fois, Marion Jalabert, Salvatore Lecca, Kristina Valentinova, Frank J. Meye, Marco Diana, Philippe Faure, Manuel Mameli, Stéphanie Caille, François Georges  Cell Reports  Volume 13, Issue 10, Pages 2287-2296 (December 2015) DOI: 10.1016/j.celrep.2015.10.076 Copyright © 2015 The Authors Terms and Conditions

Cell Reports 2015 13, 2287-2296DOI: (10.1016/j.celrep.2015.10.076) Copyright © 2015 The Authors Terms and Conditions

Figure 1 The vSUB Controls the Phasic Activity of VTA Dopamine Neurons (A) Experimental protocol. (B and C) Histological controls of the recording site (B; VTA, white arrow) and the stimulation area (C; vSUB, white arrow). The scale bar represents 1.0 mm. (D) Quantification of VTA dopamine neuron responses to electrical stimulation of the vSUB. (E and F) Typical peristimulus time histograms (PSTHs) show vSUB-evoked responses of VTA dopamine neurons; (E) excitation; (F) inhibition. Red line represents the artifact of stimulation (t0). (G) Graph illustrating the effect of ionotropic glutamatergic receptor antagonist (CNQX+AP5) on VTA dopamine neuron excitation obtained after vSUB stimulation. (H) Typical PSTHs show vSUB-evoked response (excitation) of a VTA dopamine neuron before and after CNQX and AP5 injection into VTA. Rmag, excitatory response magnitude. (I) Graph illustrating the effect of ionotropic glutamatergic receptor antagonist (CNQX+AP5) on VTA dopamine neuron inhibition evoked by vSUB stimulation. (J) Typical PSTHs showing vSUB-evoked inhibitory responses of a VTA dopamine neuron before and after CNQX+AP5 infusion into VTA. Cell Reports 2015 13, 2287-2296DOI: (10.1016/j.celrep.2015.10.076) Copyright © 2015 The Authors Terms and Conditions

Figure 2 The amBNST Is an Excitatory Relay from the vSUB to the VTA (A) Experimental protocol. (B) Injection site of a retrograde tracer CTb in the VTA (left) and anterograde tracer PHAL in the vSUB (right). The scale bar represents 1 mm. (C and D) Photographs showing PHAL-positive terminal fibers and CTb-positive neurons in the amBNST with DAB nickel labeling (C) or with fluorescent labeling (D). The scale bar represents 0.5 mm and scale bar inset represents 10 μm. (E) Experimental protocol. (F) Histological control of the injection site of CNQX and AP5 in the amBNST. The scale bar represents 0.5 mm. (G) Graph showing the effect of ionotropic glutamatergic receptor antagonist injection (or its vehicle, aCSF) into the amBNST on VTA dopamine neuron excitation normalized to the baseline after the STIMvSUB. (H) Typical PSTHs show vSUB-evoked response (excitation) of a VTA dopamine neuron before and after CNQX and AP5 injection into the amBNST. Cell Reports 2015 13, 2287-2296DOI: (10.1016/j.celrep.2015.10.076) Copyright © 2015 The Authors Terms and Conditions

Figure 3 In Vivo Potentiation of VTA Dopamine Neurons Induced by HFSvSUB (A) Experimental protocol. (B) Histological control of the recording site: the VTA. The scale bar represents 1.0 mm. (C and D) Representative trace of a VTA dopamine neuron recorded 5 days after HFSvSUB (5D-HFSvSUB) or without any stimulation (SHAM). Each dot represents a burst event. The scale bar represents 2.5 ms; 0.5 V. (E–H) Graphs illustrating the long-term effect of HFSvSUB on VTA dopamine neuron tonic firing activity (E) and bursting parameters (F–H) 1 day or 5 days after the HFSvSUB. HFSvSUB, high-frequency stimulation of the vSUB; REC, recording; 1D, 1 day; 5D, 5 days. Cell Reports 2015 13, 2287-2296DOI: (10.1016/j.celrep.2015.10.076) Copyright © 2015 The Authors Terms and Conditions

Figure 4 HFSvSUB Induces LTP in VTA-Projecting amBNST Neurons (A) Experimental protocol. (B) Histological control of the recording site, the BNST, and the stimulating sites, the vSUB and the VTA (white arrow). The scale bar represents 1.0 mm. (C) Quantification of the mean percentage change (±SEM) in the vSUB-evoked spike probability in amBNST neurons projecting to the VTA normalized to the baseline after HFSvSUB in rats. (D) Typical PSTH shows vSUB-evoked response (excitation) of a BNST neuron projecting to the VTA before and after HFSvSUB. (E) Representative traces showing a collision test and a high-frequency stimulation protocol for an amBNST neuron driven from the VTA. Left: Stimulation of the VTA 20 ms after spontaneous spikes elicits a driven spike (black circle) at 9.5-ms latency is shown. Middle: Driven spikes are occluded for similar stimuli delivered 10 ms after spontaneous impulses, indicating collision between spontaneous and driven spikes. The red cross indicates when driven spikes would have occurred in the absence of collision. Right: Driven antidromic spikes (black circles) elicited by each of the paired stimuli (2-ms interpulse interval) demonstrate that the cell can follow a frequency of 500 Hz. Cell Reports 2015 13, 2287-2296DOI: (10.1016/j.celrep.2015.10.076) Copyright © 2015 The Authors Terms and Conditions

Figure 5 LTP in amBNST Neurons Is Permissive for VTA Dopamine Potentiation (A) Experimental protocol. (B–E) Graphs illustrating the effect of AP5 injection into the amBNST followed by HFSvSUB (blue, HFSvSUB) or without stimulation (gray, SHAM AP5) on VTA dopamine neuron tonic firing activity (B) and bursting parameters (C–E), 1 day after. (F–I) Graphs illustrating the effect of AP5 injection into the amBNST followed by HFSvSUB (dark blue, HFSvSUB) or without stimulation (dark gray, SHAM AP5) on VTA dopamine neuron tonic firing activity (F) and bursting parameters (G–I), 5 days after. Cell Reports 2015 13, 2287-2296DOI: (10.1016/j.celrep.2015.10.076) Copyright © 2015 The Authors Terms and Conditions

Figure 6 HFSvSUB Potentiates Behavioral Effect of Cocaine in an amBNST-Dependent Manner (A) Experimental protocol. (B) Histological control of the injection site of AP5/FG: in the amBNST. All the solutions infused into the amBNST were diluted in 0.2% Fluorogold (FG) in order to monitor the diffusion of the injection. The absence of fluorescence in the nucleus accumbens (Nac) showed that the infused solutions in the amBNST were not diffusing in the Nac. The scale bars represent 0.5 mm. (C) Graphs showing locomotor activity in response to a low dose of cocaine (7.5 mg/kg, i.p., or saline) measured 5 days after HFSvSUB or SHAM associated to AP5 (or vehicle, aCSF) infusion into the amBNST. Cell Reports 2015 13, 2287-2296DOI: (10.1016/j.celrep.2015.10.076) Copyright © 2015 The Authors Terms and Conditions