Routing Table Status Report

Slides:



Advertisements
Similar presentations
IPv4 Address Lifetime Presented by Paul Wilson, APNIC Research activity conducted by Geoff Huston and supported by APNIC.
Advertisements

NOPEER Route Attribute Propose a well-known transitive advisory scope attribute Applied by originating AS to route prefixes Interpretable as advice to.
BGP01 An Examination of the Internets BGP Table Behaviour in 2001 Geoff Huston Telstra.
Allocation vs Announcement A comparison of RIR IPv4 Allocation Records with Global Routing Announcements Geoff Huston February 2004 (Supported by APNIC)
Tracking the Internets BGP Table Geoff Huston Telstra January 2001.
Geoff Huston, APNIC March 2006 APRICOT 2006 IPv4 Numerology.
Routing Table Status Report Geoff Huston February 2005 APNIC.
Routing Table Status Report November 2005 Geoff Huston APNIC.
Number of ASs Observations ASs grew by 25% over the year Note span of visible ASs (11,200 – 12,500) Not every AS is visible to all other ASs But there.
BGP01 An Examination of the Internets BGP Table Behaviour in 2001 Geoff Huston Telstra.
BGP Status Update Geoff Huston September What Happening (AS4637) Date.
Comparing IPv4 and IPv6 from the perspective of BGP dynamic activity Geoff Huston APNIC February 2012.
2006 – (Almost another) BGP Year in Review A BRIEF update to the 2005 report 18 October 2006 IAB Routing Workshop Geoff Huston APNIC.
BGP in 2009 Geoff Huston APNIC May Conventional BGP Wisdom IAB Workshop on Inter-Domain routing in October 2006 – RFC 4984: “routing scalability.
IPv4 Address Lifetime Expectancy Geoff Huston, APNIC 31 October 2005 Australian IPv6 Summit.
IPv4 Consumption Status Geoff Huston. Status of IPv4 today.
Allocations vs Announcements A comparison of RIR IPv4 Allocation Records with Global Routing Announcements Geoff Huston May 2004 (Activity supported by.
CS 6401 Efficient Addressing Outline Addressing Subnetting Supernetting.
IPv4 Address Lifetime Expectancy Geoff Huston Research activity supported by APNIC The Regional Internet Registries s do not make forecasts or predictions.
CRIO: Scaling IP Routing with the Core Router-Integrated Overlay Xinyang (Joy) Zhang Paul Francis Jia Wang Kaoru Yoshida.
Interconnectivity Density Compare number of AS’s to average AS path length A uniform density model would predict an increasing AS Path length (“Radius”)
1 IPv6 Address Space Management Report of IPv6 Registry Simulation Policy SIG 1 Sept 2004 APNIC18, Nadi, Fiji Geoff Huston.
IPv4 Address Lifetime Presented by Nurani Nimpuno, APNIC Research activity conducted by Geoff Huston and supported by APNIC.
Measuring IPv6 Deployment Geoff Huston George Michaelson
Measuring IPv6 Deployment Geoff Huston George Michaelson
Efficient Addressing Outline Addressing Subnetting Supernetting CS 640.
A proposal to lower the IPv4 minimum allocation size and initial criteria in the AP region prop-014-v001 Policy SIG APNIC17/APRICOT 2004 Feb
IPv4 Address Lifetime Expectancy Revisited - Revisited Geoff Huston November 2003 Presentation to the IEPG Research activity supported by APNIC The Regional.
BGP in 2011 Geoff Huston APNIC. Conventional (Historical) BGP Wisdom IAB Workshop on Inter-Domain routing in October 2006 – RFC 4984: “routing scalability.
Inter-Domain Routing Trends Geoff Huston APNIC March 2007.
CIDR Classless Inter Domain Routing Give the IP address space some breathing room! Basic idea: allocate the remaining IP addresses in variable-size blocks.
Routing Table Status Report Geoff Huston November 2004 APNIC.
IPv4 Address Lifetime Expectancy Geoff Huston, APNIC 26 October 2005 ARIN XVI.
1 IPv4 Address Lifetime Presented by Paul Wilson, APNIC Research activity conducted by Geoff Huston and supported by APNIC.
IPv4 Address Lifetime SANOG IV Presented by Nurani Nimpuno, APNIC Research activity conducted by Geoff Huston and supported by APNIC.
IPv4. The End of the World is nigh (er) ! Geoff Huston Chief Scientist APNIC.
Routing Table Status Report Geoff Huston August 2004 APNIC.
Routing Table Status Report August 2005 Geoff Huston.
Tracking the Internet’s BGP Table Geoff Huston Telstra December 2000.
Auto-Detecting Hijacked Prefixes?
More Specific Announcements in BGP
Routing 2015 Scaling BGP Geoff Huston APNIC May 2016.
Measuring BGP Geoff Huston.
IP (slides derived from past EE122 sections)
Addressing 2016 Geoff Huston APNIC.
Geoff Huston Chief Scientist, APNIC
IPv4.
IPv4 Addresses.
New Solutions For Scaling The Internet Address Space
BGP update profiles and the implications for secure BGP update validation processing Geoff Huston PAM April 2007.
Geoff Huston APNIC Labs May 2018
IP Addresses in 2016 Geoff Huston APNIC.
Routing and Addressing in 2017
More Specific Announcements in BGP
IPv6 Documentation Address Policy
Routing Table Status Report
IPv6 Address Space Management Report of IPv6 Registry Simulation
Geoff Huston September 2002
IP Addressing Introductory material
IPv6 Address Space Management Report of IPv6 Registry Simulation
RIPE October 2005 Geoff Huston APNIC
IPv4 Address Lifetime Expectancy
IPv4 Address Lifetime Expectancy Revisited
2005 – A BGP Year in Review February 2006 Geoff Huston
Routing Table Status Report
Routing Table Status Report
IPv4 Address Lifetime Expectancy
Design Expectations vs. Deployment Reality in Protocol Development
BGP: 2008 Geoff Huston APNIC.
IPv6 Unique Local Addresses Update on IETF Activity
Presentation transcript:

Routing Table Status Report Policy SIG Feb 24 2005 APNIC19, Kyoto, Japan Geoff Huston

IPv4 Routing Table Size Data assembled from a variety of sources, Including Surfnet, Telstra, KPN and Route Views. Each colour represents a time series for a single AS. The major point here is that there is no single view of routing. Each AS view is based on local conditions, which include some local information and also local filtering policies about external views.

IPv4 Routing Table Size To provide a clearer view, a single transit view has been generated. This view shows a number of distinct phases of routing table growth: 1 – the growth of the Class C’s 88 – 94 2 – the introduction of CIDR into the routing environment in 1994 3 – the Internet boom on 1999, and its crash in 2001 4 – the post-crash growth since 2002

2003 to now Routing table growth in the last 12 months shows an increasing growth trend, although the rate of growth remains close to linear (or constant) growth rates. This figure indicates that the current table growth rate is some 18,000 entries per year. This data is based on hourly snapshots of the routing table, and the noise in the figures is based downward spikes of lost routing information and upward spikes of transient routing information, possibly due to leakage of local more specific routes. The discontinuities show points of large scale aggregation or dis-aggregation.

IPv4 Address Span This figure shows the total amount of address space spanned by the routing table. This is a view derived from the Route-Views archive, where each AS has a single colour. The snapshots are at two-hourly intervals, and span from early 2000 until the present. The strong banding in the figure is spaced 16.7M units apart, or the size of a /8 advertisement There appear to be 3 /8 advertisements that are dynamic. Not every AS sees the same address range, and this is long term systemic, rather than temporary. This is probably due to routing policy interaction, coupled with some cases of prefix length filtering of routing information. The rate of growth declined sharply across 2002 and the first half of 2003, resuming its 2000 growth levels in 2004.

IPv4 Address Span This is the same data for a single AS. It is evident thjast the number of unstable /8 advertisements has dropped from 3 to 1 over this period. It is also apparent that the rate of growth in 2004 is slightly higher than that of 2000. When comparing this to the steeply rising number of routing advertisements in 2000 it is likely that the periods of growth in the routing table correspond to periods of dis-aggregation of address blocks. This implies that the large growth periods of the routing table may be closely linked to periods of growth in policy diversity within the ISP sector, coupled with denser levels of interconnectivity.

IPv4 More Specific Advertisements This shows the percentage of routing entries which are more specific of an existing aggregate advertisement. Over the past 4 years the level of fragmentation of aggregate address blocks is not getting any worse. At the start of 2001 the mean fragmentation level was 53% of all advertisements. This has dropped to 51% at present, and has remained stable for three years. The common fragmentation is to break an allocation into component /24 advertisements and advertise the fragment and the aggregate. This may be due to traffic engineering of incoming traffic using selective advertisement of more specific prefixes.

Unique ASNs Since early 2001 the number of ASNs in the routing table has been growing at a constant rate, closely matching a linear growth model. New ASNs track the growth of new service providers.

Average AS Path Length A constantly increasing number of ASNs can be related to average AS path length. The relatively constant AS path length for all AS paths implies that the density of AS interconnection is increasing at a rate proportional to the number of ASNs being added.

IPv4 Aggregation Potential This shows the aggregation potential of the entire routing table 0 – the size of the routing table in terms of number of distinct entries 1 – application of an aggregation algorithm that will only remove more specific routing entries if they match the enclosing aggregate in AS Path 2 – as with 1, but with all path prepending removed 3 – aggregation using origin AS match, disregarding AS PATH 4 – aggregation with hole coverage – i.e. aggregates across chequerboarding 5 – application of prefix length filters 6 – prepended path aggregation on filtered set 7 – prepend strpping AS path match on filtered set 8 – origin AS match on filtered set 9 – origin AS match using chequerboard coverage on filterest set

IPv6 Routing Table

IPv6 Address Span

IPv6 Unique ASNs

IPv6 Aggregation Potential