17. Radiometric dating and applications to sediment transport William Wilcock OCEAN/ESS 410.

Slides:



Advertisements
Similar presentations
Nuclear Chemistry and Radioactivity
Advertisements

Radiometric Dating.
Radiometric Dating: General Theory The radioactive decay of any radioactive atom is an entirely random event, independent of neighboring atoms, physical.
Fossils and evolution Rates of deposition of sediments Cooling of the Earth from a molten state Radiometric Dating Methods for Estimating the Age of the.
PALAEONTOLOGY The study of fossils © 2008 Paul Billiet ODWSODWS.
Dating with Radioactivity
Radiometric Dating Timothy G. Standish, Ph. D..
Decay Behavior of Parent and Daughter Atoms. Deriving the age equation The change in the number of parent atoms is proportional to the total number of.
The U-series Disequilibrium Method of Dating
ABSOLUTE AGE IS EXPRESSED IN SPECIFIC UNITS, SUCH AS YEARS BEFORE PRESENT. ONE METHOD OF ABSOLUTE DATING IS COUNTING THE ANNUAL LAYERS OF GLACIAL LAKE.
29.3 A BSOLUTE T IME. H ISTORICAL M ETHODS Counting rigs in trees – more accurate, but cannot calculate very old material.
Absolute Dating. A.D. is used when geologists want to know the actual numerical age of a rock layer. A.D. is used when geologists want to know the actual.
UNIT 3 Geologic Time and Fossils
Methods of Dating Absolute and Relative.
THE GEOLOGIC TIME SCALE: THE HISTORY OF EARTH
Relative and Absolute Dating
ABSOLUT DATING Explanations collected from three online presentations.
Sci. 3-3 Absolute Dating: A measure of Time Pages
Detecting Radiation A Geiger counter is the most familiar tool for detecting radiation. A Geiger counter is the most familiar tool for detecting radiation.
3-1 CHEM 312: Lecture 3 Radioactive Decay Kinetics Outline Readings: Modern Nuclear Chemistry Chapter 3; Nuclear and Radiochemistry Chapters 4 and 5 Radioactive.
Lab 525 ONLINE LESSON If viewing this lesson in Powerpoint Use down or up arrows to navigate.
Absolute Dating Chapter 3, Sec.3. Process to find the approximate age of rocks or fossils.
Nuclear Reactions Chapter 10.
Uranium 238 Decay Series. Element: Symbol: Atomic Number: Atomic Mass: Decay Particle: Half Life: Uranium U Alpha 4.5x10 yrs 9.
Climate archives, data, models (Ch. 2) climate archives dating of climate archives timespan & time resolution GCMs.
Time and Geology Quantitative Geologic Time Early Attempts Tried to place events in chronology of actual age James Ussher, Archbishop of Armagh and Primate.
Absolute Time. Radioactive Decay Parent Isotope --> Daughter Isotope + Decay Particle + Energy.
Absolute Dating of Rocks and Strata
Intro to Geomorphology (Geos 450/550) Lecture 4: dating methods More on field trip #2 Radiometric techniques Cosmogenic techniques Additional detail on.
Using the half – lives of radioactive elements. In this presentation we will learn: 1.That there is an isotope of carbon that is useful for dating materials.
Absolute Dating Chapter 7 Lesson 2.
Nuclear Stability and Decay
Radioisotopes, and their use in “dating” rocks. Radioactive Decay Certain isotopes of some elements are not stable. They naturally change (decay) over.
Copyright © 2014 All rights reserved, Government of Newfoundland and Labrador Earth Systems 3209 Unit: 2 Historical Geology Reference: Chapters 6, 8; Appendix.
History of Life: Origins of Life Chapter Age of Earth The earth is about 4.5 billion years old How did we measure that? Radiometric Dating = calculating.
16. Sediment Transport Across the Continental Shelf and Lead-210 Sediment Accumulation Rates William Wilcock OCEAN/ESS 410.
Marmota monax. 12 hr Daylight 12 hr Night Groundhog Day cross-quarter 12 hr Daylight 12 hr Night Shortest Day Longest Day Halloween cross-quarter May.
Outcomes: By the end of this chapter you should be able to: Describe evidence that the Australian continental landmass began developing 4.1 billion years.
The Theory of Radioactive Decay Nuclear Physics Lesson 7.
Atoms and Study of the Past I. What is an atom? An atom (element) is the basic unit of matter. The Periodic Table displays the 115 known atoms.
Copyright © 2014 All rights reserved, Government of Newfoundland and Labrador Earth Systems 3209 Unit: 2 Historical Geology Reference: Chapters 6, 8; Appendix.
Carbon dating  Dates of very old materials are determined using carbon-14 or C- 14 dating.  It can only be used on things once alive.  This is done.
ABSOLUTE AGE RIVER EROSION RATES SEDIMENT DEPOSITION VARVE COUNTS
Radiometric Dating Continuation of Journal Entry #5.
ABSOLUTE AGE Absolute Dating Radiometric Dating Half Life Isotope Radioactive decay Carbon 14.
A Fossil.  Any method of measuring the age of an event or object in years.
Radioactive Half-life
Fossils and Radiometric Dating
Dating with Radioactivity Dating with Radioactivity  Radioactivity is the spontaneous decay of certain unstable atomic nuclei.
How old is the Menan Butte? Carbon-14 Dating & Potassium-Argon Dating.
Detecting Radiation  A Geiger counter is the most familiar tool for detecting radiation.  The probe of this device contains argon gas. When radiation.
Dating Rocks and Remains Radioactive Decay: Vocabulary Half-Life: The amount of time it takes for half of a radioactive isotope to decay. Radioactive.
Table of Contents Titles: Age and Time Page #: 13 Date: 9/12/12.
Absolute Age Dating. Geological Time Absolute time – putting dates on geological events using radiometric dating and other techniques.
UNIT - 7 Dating and Correlation techniques. Absolute vs. Relative Age Relative Age Determining the age of an object in relation to other objects “Estimate”
Half Life Calculation of Radioactive Decay Atomic Physics.
Lecture 8 Radiometric Dating
RADIOMETRIC METHODS ROCK DATING. The various isotopes of the same element = same atomic number but differ in terms of atomic mass They differ in the number.
Example 19.1 Writing Nuclear Equations for Alpha Decay
Geologic Time   By examining layers of sedimentary rock, geologists developed a time scale for dividing up earth history. Earlier in the 20th century,
Chapter 8.2 Lecture Chronological Time.
EARTH’S HISTORY RADIOMETRIC DATING
EARTH’S HISTORY RADIOMETRIC DATING
Measuring the speed of radioactive decay
Measuring the speed of radioactive decay
Geologic Time   By examining layers of sedimentary rock, geologists developed a time scale for dividing up earth history. Earlier in the 20th century,
NOTES: GEOLOGIC DATING
Half-Life Half-life is the time required for half of a sample of a radioactive substance to disintegrate by radioactive decay. Atoms with shorter half-lives.
NOTES: GEOLOGIC DATING
Measuring the speed of radioactive decay
Presentation transcript:

17. Radiometric dating and applications to sediment transport William Wilcock OCEAN/ESS 410

Lecture/Lab Learning Goals Understand the basic equations of radioactive decay Understand how Potassium-Argon dating is used to estimate the age of lavas Understand how lead-210 dating of sediments works –Concept of supported and unsupported lead-210 in sediments –Concept of activity –Steps to estimate sedimentation rates from a vertical profile of lead-210 activity Application of lead-210 dating to determining sediment accumulation rates on the continental shelf and the interpretation of these rates - LAB

Radioactive decay - Basic equation - radioactive decay constant is the fraction of the atoms that decay in unit time (e.g., yr -1 ) N - Number of atoms of an unstable isotope The number or atoms of an unstable isotope elements decreases with time

Radioactive decay - Basic equation T 1/2 - half life is the time for half the atoms to decay Setting N T = ½N 0, the time for half the radioactive atoms to decay is give by

Potassium-Argon (K-Ar) Dating The isotope 40 K is one of 3 isotopes of Potassium ( 39 K, 40 K and 41 K) and is about 0.01% of the natural potassium found in rocks 40 K is radioactively unstable and decays with a half life T ½ = 1.25 x 10 9 years (λ = 1.76 x s -1 ) to a mixture of 40-Calcium (89.1%) and 40-Argon (10.9%). Because Argon is a gas it escapes from molten lavas. Minerals containing potassium that solidify from the lava will initially contain no argon. Radioactive decay of 40K within creates 40Ar which is trapped in the mineral grains. If the ratio of 40Ar/40K can be measured in a rock sample via mass spectrometry the age of lava can be calculated.

K-Ar Dating Formula If K f is the amount of 40-Potassium left in the rock and Ar f the amount of 40-Ar created in the mineral then Note that the factor 1 / accounts for the fact that only 10.9% of the 40 K that decays created 40 Ar (the rest creates 40 Ca)

K-Ar dating assumptions Ar concentrations are zero when the lava solidifies (in seafloor basalts which cool quickly Argon can be trapped in the glassy rinds of pillow basalts violating this assumption) No Ar is lost from the lava after formation (this assumption can be violated if the rock heats up during a complex geological history) The sample has not been contaminated by Argon from the atmosphere (samples must be handled carefully).

Lead-210 dating 238 U 234 U … 230 Th 226 Ra 222 Rn… 210 Pb… 206 Pb Half Life 4.5 Byr Rocks Half life 1600 yrs, eroded to sediments Gas, half life 3.8 days Half life, 22.3 years Stable 210 Pb or Pb-210 is an isotope of lead that forms as part of a decay sequence of Uranium-238

Pb-210 in sediments Excess or Unsupported 210 Pb Young sediments also include an excess of unsupported 210 Pb. Decaying 238 U in continental rocks generates 222 Rn (radon is a gas) some of which escapes into the atmosphere. This 222 Rn decays to 210 Pb which is efficiently washed out of the atmosphere and incorporated into new sediments. This unsupported 210 Pb is not replaced as it decays because the radon that produced it is in the atmosphere. Supported 210 Pb Sediments contain a background level of 210 Pb that issupported by the decay of 226 Ra (radium is an alkali metal) which is eroded from rocks and incorporated into sediments. As fast as this background 210 Pb is lost by radioactive decay, new 210 Pb is created by the decay of 226 Ra.

Activity - Definition In order understand how 210 Pb is used to determine sedimentation rates we need to the activity of a sediment Activity is the number of disintegrations in unit time per unit mass (units are decays per unit time per unit mass. For 210 Pb the usual units are dpm/g = decays per minute per gram ) C - detection coefficient, a value between 0 and 1 which reflects the fraction of the disintegrations are detected (electrically or photographically)

Activity - Equations We know previously defined the equation for the rate of radioactive decays as Multiplying both sides by the constant cλ gives an equivalent equation in activity

Pb-210 activity in sediments Pb-210 activity Depth, Z (or age) ABAB Background Pb-210 levels from decay of Radon in sediments (supported Pb-210) Surface mixed layer - bioturbation Region of radioactive decay. Measured Pb-210 activity Excess or unsupported Pb-210 activity (measured minus background)

Excess Pb-210 concentrations Excess Pb-210 activity Age of sediments, t For a constant sedimentation rate, S (cm/yr), we can replace the depth axis with a time axis Work with data in this region t2t2 t1t1 A2A2 A1A1

Solving the equation - 1 The equation relating activity to the radioactive decay constant Integrating this with the limits of integration set by two points A relationship between age and activity

Solving the equation - 2 Substitute in the relationship between age and depth An expression for the sedimentation rate

Pb-210 sedimentation rates ln(A) Depth, z Plot depth against natural logarithm of Pb-210 activity Ignore data in mixed layer Ignore data with background levels

Summary - How to get a sedimentation rate 1.Identify the background (supported) activity A B - the value of A at larger depths where it is not changing with depth. 2.Subtract the background activity from the observed activities at shallower depths 3.Take the natural logarithm to get ln(A)=ln(A observed -A B ) 4.Plot depth z against ln(A). 5.Ignore in the points in the surface mixed region where ln(A) does not change with depth. 6.Ignore points in the background region at depth (A observed A B ). 7.Measure the slope in the middle region. It will be negative. 8.Multiply the minus the slope by the radioactive decay constant ( = yr -1 ) to get the sedimentation rate.

Limitations Assumption of uniform sedimentation rates. Cannot use this technique where sedimentation rate varies with time (e.g., turbidites). Assumption of uniform initial and background Pb-210 concentrations (reasonable if composition is constant).

Upcoming lab In the lab following this lecture you are going to calculate a sedimentation rate for muds on the continental shelf using radioactive isotope Lead-210 and you are going to interpret a data set of many such measurements obtained off the coast of Washington.