Graphing Trigonometric Functions

Slides:



Advertisements
Similar presentations
Write equation or Describe Transformation. Write the effect on the graph of the parent function down 1 unit1 2 3 Stretch by a factor of 2 right 1 unit.
Advertisements

Graphs of the Sine, Cosine, & Tangent Functions Objectives: 1. Graph the sine, cosine, & tangent functions. 2. State all the values in the domain of a.
Warm-up Graph the following and find the amplitude, period, increment, S.A., starting point, domain and range. Y = -2sin(2x + 4π) – 1.
6.5 & 6.7 Notes Writing equations of trigonometric functions given the transformations.
Notes Over 6.4 Graph Sine, Cosine Functions Notes Over 6.4 Graph Sine, Cosine, and Tangent Functions Equation of a Sine Function Amplitude Period Complete.
Trig – Section 4 Graphing Sine and Cosine Objectives: To graph sine and cosine curves To find amplitude, period and phase shifts.
We need to sketch the graph of y = 3sin(5t+90)
Section Frequency of Sine and Cosine Graphs.
Aim: What is the transformation of trig functions? Do Now: HW: Handout Graph: y = 2 sin x and y = 2 sin x + 1, 0 ≤ x ≤ 2π on the same set of axes.
C HAPTER 7: T RIGONOMETRIC G RAPHS 7.4: P ERIODIC G RAPHS AND P HASE S HIFTS Essential Question: What translation is related to a phase shift in a trigonometric.
MTH 112 Elementary Functions Chapter 5 The Trigonometric Functions Section 6 – Graphs of Transformed Sine and Cosine Functions.
Starter a 6 c A 53° 84° 1.Use Law of Sines to calculate side c of the triangle. 2.Use the Law of Cosines to calculate side a of the triangle. 3.Now find.
Trigonometric Functions
Chapter 6 – Graphs and Inverses of the Trigonometric Functions
Warm up Find the values of θ for which cot θ = 1 is true. Write the equation for a tangent function whose period is 4π, phase shift 0, and vertical shift.
Graphs of the Sine and Cosine Functions Section 6.
January 24 th copyright2009merrydavidson. y = cos x.
Page 309 – Amplitude, Period and Phase Shift Objective To find the amplitude, period and phase shift for a trigonometric function To write equations of.
CHAPTER 4 – LESSON 1 How do you graph sine and cosine by unwrapping the unit circle?
Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1 4 Graphs of the Circular Functions Copyright © 2013, 2009, 2005 Pearson Education, Inc. 1.
6.3 Graphing Trig Functions
Chapter 14 Day 8 Graphing Sin and Cos. A periodic function is a function whose output values repeat at regular intervals. Such a function is said to have.
Periodic Function Review
Graphing Trig Functions Review Whiteboard Activity.
Trigonometric Functions Section 1.6. Radian Measure The radian measure of the angle ACB at the center of the unit circle equals the length of the arc.
Writing Equations of Trigonometric Graphs Dr. Shildneck Fall.
Notes Over 14.1 Graph Sine, Cosine, and Tangent Functions.
Section 3.5 Trigonometric Functions Section 3.5 Trigonometric Functions.
6.7 Graphing Other Trigonometric Functions Objective: Graph tangent, cotangent, secant, and cosecant functions. Write equations of trigonometric functions.
Essential Question: How do we graph trig functions, their transformations, and inverses? Graphs of Sine and Cosine.
Pre-Calculus Honors 4.5, 4.6, 4.7: Graphing Trig Functions
1.9 Inverse Trig Functions Obj: Graph Inverse Trig Functions
Graphing Trigonometric Functions
Amplitude, Period, & Phase Shift
How do we recognize and graph periodic and trigonometric functions?
Graphing Trigonometry Functions
Chapter 4: Lesson 4.5 Graphs of Sine and Cosine Functions
7.1: Graphs of Sin, Cos, and Tan
Graphs of Trigonometric Functions
Work on worksheet with 8 multiple choice questions.
Transformations of sine and cosine
Inverse Trigonometric Functions
Graphing Trigonometric Functions
Amplitude, Period, and Phase Shift
TRIGONOMETRIC GRAPHS.
Amplitude, Period, & Phase Shift
10. Writing the equation of trig functions
Exponential Functions
Notes Over 6.4 Graph Sine, Cosine Functions.
State the period, phase shift, and vertical shift
Graphing Solutions of Trig Functions
Solving Trigonometric Equations
Frequency and Phase Shifts
Graphs of Secant, Cosecant, and Cotangent
Sullivan Algebra and Trigonometry: Section 7.6
4.2 – Translations of the Graphs of the Sine and Cosine Functions
5.4 Graphs of the Sine and Cosine Functions
Frequency and Phase Shifts
Writing Trig Functions
Inverse Trig Functions
Graphs of Sine and Cosine: Sinusoids
7.3: Amplitude and Vertical Shifts
Section 4.5 Graphs of Sine and Cosine Functions
5.1 Graphing Sine and Cosine Functions
10. Writing the equation of trig functions
What is your best guess as to how the given function
Trig Functions of Any Angle
Double Angle Identities
Section 5.5 Graphs of Sine and Cosine Functions
pencil, highlighter, calculator, notebook, assignment
Presentation transcript:

Graphing Trigonometric Functions Section 4.6B Precalculus PreAP/Dual, Revised ©2017 viet.dang@humbleisd.net 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Review of Graphs 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Transformations Equation: 𝒚=𝑨 𝐭𝐫𝐢𝐠 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 𝑩 𝒙−𝑪 +𝑫 𝑨 is the amplitude 𝒂: vertically stretches by a factor of 𝒂, 𝟏 𝒂 : Vertically compresses by a factor of 𝟏/𝒂 𝑩 is the period or frequency Period equation: 𝟐𝝅 𝑩 for sine and cosine, 𝝅 𝑩 for tangent 𝑩: phase compresses by a factor of 𝝅 𝑩 𝟏 𝑩 : phasely stretches by a factor of 𝒃 𝑪 is the phase shift If there no GCF taken out, divide the coefficient 𝑬. 𝑫 is the vertical shift F. Frequency is defined as the number of cycles per second 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Steps Identify 𝑨, 𝑩, 𝑪, and 𝑫 from the equation, 𝒚=𝑨 𝐭𝐫𝐢𝐠 𝑩 𝒙−𝑪 +𝑫 Identify the phase shift Period: 𝟐𝜋 𝑩 or 𝜋 𝑩 (for Tan and Cot only) Use the period to identify the spacing 1. Anchor Point Equation: 𝑷𝒆𝒓𝒊𝒐𝒅 𝟒 Start with the phase shift as the middle of the trig table (at the origin) and apply the spacing before and after 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Basic Table Points 𝒚= 𝐬𝐢𝐧 𝒙 𝒙 𝒚 𝑪 𝟎 𝟏 −𝟏 𝒚= 𝐜𝐨𝐬 𝒙 𝒙 𝒚 𝑪 𝟏 𝟎 −𝟏 𝒚= 𝐭𝐚𝐧 𝒙 𝒙 𝒚 𝑼𝒏𝒅 −𝟏 𝑪 𝟎 𝟏 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Basic Table Points 𝒚= 𝐜𝐬𝐜 𝒙 𝒙 𝒚 𝑪 𝑼𝒏𝒅 𝟏 −𝟏 𝒚= 𝐬𝐞𝐜 𝒙 𝒙 𝒚 𝑼𝒏𝒅 𝑪 𝟏 −𝟏 𝒚= 𝐜𝐨𝐭 𝒙 𝒙 𝒚 𝑪 𝑼𝒏𝒅 𝟏 𝟎 −𝟏 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 1 Graph 𝒚=𝐬𝐢𝐧 𝒙+𝟏 in one period and identify amplitude, period, vertical shift, phase shift, domain (entire graph), and range Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒚=𝐬𝐢𝐧(𝒙) C 𝟎 𝟏 −𝟏 𝐬𝐢𝐧 (𝒙) +𝟏 𝟏 𝟐 𝟎 𝟎 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 1 Graph 𝒚=𝐬𝐢𝐧 𝒙+𝟏 in one period and identify amplitude, period, vertical shift, phase shift, domain (entire graph), and range Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒚=𝐬𝐢𝐧 (𝒙)+𝟏 𝟎 𝟏 𝝅/𝟐 𝟐 𝝅 𝟑𝝅/𝟐 𝟐𝝅 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 2 Graph 𝒚= 𝟏 𝟐 𝐜𝐨𝐬 𝜽−𝟏 in one period and identify amplitude, period, vertical shift, phase shift, domain (entire graph), and range 𝒚 =𝐜𝐨𝐬(𝜽) C 𝟏 𝟎 −𝟏 𝟏 𝟐 𝐜𝐨𝐬𝛉 𝟏/𝟐 𝟎 −𝟏/𝟐 𝟏 𝟐 𝐜𝐨𝐬𝛉−𝟏 −𝟏/𝟐 −𝟏 −𝟑/𝟐 Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝟎 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 2 Graph 𝒚= 𝟏 𝟐 𝐜𝐨𝐬 𝜽−𝟏 in one period and identify amplitude, period, vertical shift, phase shift, domain (entire graph), and range Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝟏 𝟐 𝐜𝐨𝐬𝛉−𝟏 𝟎 −𝟏/𝟐 𝝅/𝟐 −𝟏 𝝅 −𝟑/𝟐 𝟑𝝅/𝟐 𝟐𝝅 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Your Turn Graph 𝒚= 𝟏 𝟒 𝐬𝐢𝐧 𝒕 +𝟏 from −𝟐𝝅, 𝟐𝝅 and identify amplitude, period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒚= 𝟏 𝟒 𝐬𝐢𝐧 𝒕 +𝟏 𝒙 𝒚 𝟎 𝟏 𝝅/𝟐 𝟓/𝟒 𝝅 𝟑𝝅/𝟐 𝟑/𝟒 𝟐𝝅 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 3 Given 𝒚=𝟐 𝐭𝐚𝐧 𝒙+𝟏 from −𝝅, 𝝅 and amplitude, period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒚 =𝐭𝐚𝐧(𝒙) 𝑼𝒏𝒅 −𝟏 𝑪 𝟎 𝟏 𝒚=𝟐 𝐭𝐚𝐧 𝒙 𝑼𝒏𝒅 −𝟐 𝟎 𝟐 𝟐 𝐭𝐚𝐧 𝒙+𝟏 𝑼𝒏𝒅 −𝟏 𝟏 𝟑 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 3 Given 𝒚=𝟐 𝐭𝐚𝐧 𝒙+𝟏 from −𝝅, 𝝅 and amplitude, period, vertical shift, and phase shift Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒙 𝟐 𝐭𝐚𝐧 𝒙+𝟏 −𝝅/𝟐 𝑼𝒏𝒅 −𝝅/𝟒 −𝟏 𝟎 𝟏 𝝅/𝟒 𝟑 𝝅/𝟐 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 4 Given 𝒚= 𝟏 𝟐 𝐜𝐬𝐜 𝟐𝒙+𝟏 from −𝟐𝝅, 𝟐𝝅 and amplitude, period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒚 =𝐜𝐬𝐜(𝒙) 𝑪 𝑼𝒏𝒅 𝟏 −𝟏 𝒚= 𝟏 𝟐 𝒄𝒔𝒄 𝒙 𝑼𝒏𝒅 𝟏/𝟐 −𝟏/𝟐 𝟏 𝟐 𝒄𝒔𝒄 𝒙+𝟏 𝑼𝒏𝒅 𝟑/𝟐 𝟏/𝟐 𝟎 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 4 Given 𝒚= 𝟏 𝟐 𝐜𝐬𝐜 𝟐𝒙+𝟏 from −𝟐𝝅, 𝟐𝝅 and amplitude, period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒙 𝟏 𝟐 𝒄𝒔𝒄 𝒙+𝟏 𝟎 𝑼𝒏𝒅 𝛑/𝟒 𝟑/𝟐 𝛑/𝟐 𝟑𝛑/𝟒 𝟏/𝟐 𝝅 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Your Turn Given 𝒚= 𝟏 𝟑 𝐬𝐞𝐜 𝒙−𝟏 from −𝟐𝝅, 𝟐𝝅 and identify period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 5 Given 𝒚=𝟓 𝐬𝐢𝐧 𝟐 𝒙− 𝝅 𝟔 +𝟏, identify amplitude, period, vertical shift, phase shift, and points to graph in one period Amplitude Period Vertical Shift 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

𝑩 is OUTSIDE of the parenthesis §4.6B: Graphing Trig Functions Example 5 Given 𝒚=𝟓 𝐬𝐢𝐧 𝟐 𝒙− 𝝅 𝟔 +𝟏, identify amplitude, period, vertical shift, phase shift, and points to graph in one period 𝑩 is OUTSIDE of the parenthesis Phase Shift 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 5 Given 𝒚=𝟓 𝐬𝐢𝐧 𝟐 𝒙− 𝝅 𝟔 +𝟏, identify amplitude, period, vertical shift, phase shift, and points to graph in one period Phase Shift 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 5 Given 𝒚=𝟓 𝐬𝐢𝐧 𝟐 𝒙− 𝝅 𝟔 +𝟏, identify amplitude, period, vertical shift, phase shift, and points to graph in one period 𝒚= 𝐬𝐢𝐧 𝒙 𝒀=𝟓sin⁡(𝒙) 𝒀=𝟓sin⁡(𝒙)+𝟏 𝒙 𝒚 𝝅/𝟔 𝟎 𝟏 𝟓𝝅/𝟏𝟐 𝟓 𝟔 𝟐𝝅/𝟑 𝟏𝟏𝝅/𝟏𝟐 −𝟏 −𝟓 −𝟒 𝟕𝝅/𝟔 𝒚= 𝐬𝐢𝐧 𝒙 𝒙 𝒚 𝑪 𝟎 𝟏 −𝟏 𝒚= 𝐬𝐢𝐧 𝒙 𝒀=𝟓sin⁡(𝒙) 𝒙 𝒚 𝝅/𝟔 𝟎 𝟓𝝅/𝟏𝟐 𝟏 𝟓 𝟐𝝅/𝟑 𝟏𝟏𝝅/𝟏𝟐 −𝟏 −𝟓 𝟕𝝅/𝟔 𝒚= 𝐬𝐢𝐧 𝒙 𝒙 𝒚 𝝅/𝟔 𝟎 𝟓𝝅/𝟏𝟐 𝟏 𝟐𝝅/𝟑 𝟏𝟏𝝅/𝟏𝟐 −𝟏 𝟕𝝅/𝟔 𝒚= 𝐬𝐢𝐧 𝒙 𝒙 𝒚 𝝅/𝟔 𝟎 𝟓𝝅/𝟏𝟐 𝟏 𝟖𝝅/𝟏𝟐 𝟏𝟏𝝅/𝟏𝟐 −𝟏 𝟏𝟒𝝅/𝟏𝟐 𝒚= 𝐬𝐢𝐧 𝒙 𝒙 𝒚 𝝅/𝟔 𝟎 𝟏 −𝟏 𝒚= 𝐬𝐢𝐧 𝒙 𝒙 𝒚 𝝅/𝟔 𝟎 𝟓𝝅/𝟏𝟐 𝟏 𝟖𝝅/𝟏𝟐 −𝟏 𝒚= 𝐬𝐢𝐧 𝒙 𝒙 𝒚 𝝅/𝟔 𝟎 𝟓𝝅/𝟏𝟐 𝟏 −𝟏 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 6 Given 𝒚=𝟑 𝐜𝐨𝐬 𝟒 𝒙+ 𝝅 𝟐 −𝟏, identify amplitude, period, vertical shift, phase shift, and points to graph in one period Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒚= 𝐜𝐨𝐬 𝒙 𝒀=𝟑𝒄𝒐𝒔⁡(𝒙) 𝒀=𝟑𝒄𝒐 𝒔 𝒙 −𝟏 𝒙 𝒚 −𝝅/𝟐 𝟏 𝟑 𝟐 𝟎 −𝟏 𝝅/𝟐 −𝟑 −𝟐 𝝅 𝟑𝝅/𝟐 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 7 Given 𝒚=𝟒 𝐬𝐢𝐧 𝝅𝒙+𝟐 −𝟓, identify amplitude, period, vertical shift, and phase shift and points from −𝟐𝝅, 𝟐𝝅 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 7 Given 𝒚=𝟒 𝐬𝐢𝐧 𝝅𝒙+𝟐 −𝟓, identify amplitude, period, vertical shift, and phase shift and points from −𝟐𝝅, 𝟐𝝅 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 7 Given 𝒚=𝟒 𝐬𝐢𝐧 𝝅𝒙+𝟐 −𝟓, identify amplitude, period, vertical shift, and phase shift and points from −𝟐𝝅, 𝟐𝝅 𝒙 𝑷𝒆𝒓𝒊𝒐𝒅: 𝝅 𝑷𝒉𝒂𝒔𝒆 𝑺𝒉𝒊𝒇𝒕: 𝑳𝒆𝒇𝒕 𝟐/𝝅 𝒚 = sin𝒙 𝒚 = 𝟒 cos (𝝅𝒙 + 𝟐) 𝒚 = 𝟒 cos (𝝅𝒙 + 𝟐) – 𝟓 𝟎 𝟎 – 𝟐/𝝅 𝝅/𝟐 𝝅/𝟒 𝝅/𝟒 – 𝟐/𝝅 𝟏 𝟒 𝝅 𝝅/𝟐 – 𝟐/𝝅 𝟑𝝅/𝟐 𝟑𝝅/𝟒 𝟑𝝅/𝟒 – 𝟐/𝝅 –𝟏 –𝟒 𝟐𝝅 𝝅 – 𝟐/𝝅 𝒙 𝑃𝑒𝑟𝑖𝑜𝑑: 𝜋 𝑷𝒉𝒂𝒔𝒆 𝑺𝒉𝒊𝒇𝒕: 𝑳𝒆𝒇𝒕 𝟐/𝝅 𝒚 = 𝒔𝒊𝒏⁡𝒙 𝒚 = 𝟒 𝒔𝐢𝐧 𝝅𝒙 +𝟐 𝒔𝐢𝐧 𝝅𝒙 +𝟐 𝒚 = 𝟒𝒔𝒊𝒏 𝝅𝒙 +𝟐 𝟒𝒔𝒊𝒏 𝝅𝒙 +𝟐 −𝟓 𝟎 𝟎 – 𝟐/𝝅 –𝟓 𝝅/𝟐 𝝅/𝟒 𝝅/𝟒 – 𝟐/𝝅 𝟏 𝟒 –𝟏 𝝅 𝝅/𝟐 – 𝟐/𝝅 𝟑𝝅/𝟐 𝟑𝝅/𝟒 𝟑𝝅/𝟒 – 𝟐/𝝅 –𝟒 –𝟗 𝟐𝝅 𝝅 – 𝟐/𝝅 x Period: π Phase Shift: Left 2/π y = sin x y = 4 cos (πx + 2) y = 4 cos (πx + 2) – 5 0 – 2/π π/2 π/4 π/4 – 2/π 1 π π/2 – 2/π 3π/2 3π/4 3π/4 – 2/π –1 2π π – 2/π x Period: π Phase Shift: Left 2/π y = sin x y = 4 cos (πx + 2) y = 4 cos (πx + 2) – 5 π/2 π/4 π 3π/2 3π/4 2π x Period: π Phase Shift: Left 2/π y = sin x y = 4 cos (πx + 2) y = 4 cos (πx + 2) – 5 0 – 2/π π/2 π/4 π/4 – 2/π π π/2 – 2/π 3π/2 3π/4 3π/4 – 2/π 2π π – 2/π §4.6B: Graphing Trig Functions 2/22/2019 5:17 PM

§4.6B: Graphing Trig Functions Your Turn Given 𝒚=𝟐 𝐬𝐢𝐧 𝟑 𝒙+ 𝝅 𝟑 −𝟓, identify amplitude, period, vertical shift, phase shift, and points to graph in one period Amplitude Period Vertical Shift Phase Shift Spacing (A.P.) Domain Range 𝒚= 𝐬𝐢𝐧 𝒙 𝒀=𝟐𝒔𝒊𝒏⁡(𝒙) 𝒀=𝟐𝒔𝒊𝒏(𝒙)−𝟓 𝒙 𝒚 −𝝅/𝟑 𝟎 −𝟓 −𝝅/𝟔 𝟏 𝟐 −𝟑 𝝅/𝟔 −𝟏 −𝟐 −𝟕 𝝅/𝟑 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 8 Graph 𝒚=−𝟐𝐜𝐨𝐬 𝟑 𝒙+ 𝝅 𝟑 in one period and identify amplitude, period, vertical shift, phase shift, domain, and range 𝒚= 𝐜𝐨𝐬 𝒙 𝒙 𝒚 𝑪 𝟏 𝟎 −𝟏 𝒚= −𝟐𝐜𝐨𝐬 𝟑 𝒙 𝒙 𝒚 −𝝅/𝟑 −𝟐 −𝝅/𝟔 𝟎 𝟐 𝝅/𝟔 𝝅/𝟑 𝒙 −𝝅/𝟑 −𝝅/𝟔 𝟎 𝝅/𝟔 𝝅/𝟑 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 8 Graph 𝒚=−𝟐𝐜𝐨𝐬 𝟑 𝒙+ 𝝅 𝟑 in one period and identify amplitude, period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Domain Range 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 9 Graph 𝒚=𝟐 𝐬𝐢𝐧 𝟒𝒙+𝝅 −𝟏 from 𝟎,𝟐𝝅 and identify amplitude, period, vertical shift, phase shift, domain, and range 𝒚= 𝟐𝐬𝐢𝐧 𝟒 𝒙+ 𝝅 𝟒 𝒙 𝒚 −𝝅/𝟒 𝟎 −𝝅/𝟖 𝟐 𝝅/𝟖 −𝟐 𝝅/𝟒 𝒚= 𝐬𝐢𝐧 𝒙 𝒙 𝒚 𝑪 𝟎 𝟏 −𝟏 𝒚= 𝟐𝐬𝐢𝐧 𝟒 𝒙+ 𝝅 𝟒 −𝟏 𝒙 𝒚 −𝝅/𝟒 −𝟏 −𝝅/𝟖 𝟏 𝟎 𝝅/𝟖 −𝟑 𝝅/𝟒 𝒙 −𝝅/𝟒 −𝝅/𝟖 𝟎 𝝅/𝟖 𝝅/𝟒 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 9 Graph 𝒚=𝟐 𝐬𝐢𝐧 𝟒𝒙+𝝅 −𝟏 from 𝟎,𝟐𝝅 and identify amplitude, period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Anchor Points Domain Range 𝒚= 𝟐𝐬𝐢𝐧 𝟒 𝒙+ 𝝅 𝟒 −𝟏 𝒙 𝒚 −𝝅/𝟒 −𝟏 −𝝅/𝟖 𝟏 𝟎 𝝅/𝟖 −𝟑 𝝅/𝟒 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 10 Given 𝒚=−𝟐 𝐭𝐚𝐧 𝒙+ 𝝅 𝟐 −𝟏 from −𝝅, 𝝅 and amplitude, period, vertical shift, phase shift, domain, and range 𝒚= −𝟐𝐭𝐚𝐧 𝒙+ 𝝅 𝟐 −𝟏 𝒙 𝒚 −𝝅 𝑼𝒏𝒅 −𝟑𝝅/𝟒 𝟏 −𝝅/𝟐 −𝟏 −𝝅/𝟒 −𝟑 𝟎 𝒚= −𝟐𝐭𝐚𝐧 𝒙+ 𝝅 𝟐 𝒙 𝒚 −𝝅 𝑼𝒏𝒅 −𝟑𝝅/𝟒 𝟐 −𝝅/𝟐 𝟎 −𝝅/𝟒 −𝟐 𝒚= 𝐭𝐚𝐧 𝒙+𝝅/𝟐 𝒙 𝒚 𝑼𝒏𝒅 −𝟏 𝑪 𝟎 𝟏 𝒙 −𝝅 −𝟑𝝅/𝟒 −𝝅/𝟐 −𝝅/𝟒 𝟎 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 10 Given 𝒚=−𝟐 𝐭𝐚𝐧 𝒙+ 𝝅 𝟐 −𝟏 from −𝝅, 𝝅 and identify period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Anchor Points Domain Range 𝒚= −𝟐𝐭𝐚𝐧 𝒙+ 𝝅 𝟐 −𝟏 𝒙 𝒚 −𝝅 𝑼𝒏𝒅 −𝟑𝝅/𝟒 𝟏 −𝝅/𝟐 −𝟏 −𝝅/𝟒 −𝟑 𝟎 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Example 10 Given 𝒚=−𝟐 𝐭𝐚𝐧 𝒙+ 𝝅 𝟐 −𝟏 from −𝝅, 𝝅 and amplitude, period, vertical shift, phase shift, domain, and range 𝒚= −𝟐𝐭𝐚𝐧 𝒙+ 𝝅 𝟐 −𝟏 𝒙 𝒚 −𝝅 𝑼𝒏𝒅 −𝟑𝝅/𝟒 𝟏 −𝝅/𝟐 −𝟏 −𝝅/𝟒 𝟑 𝟎 𝒚= −𝟐𝐭𝐚𝐧 𝒙+ 𝝅 𝟐 𝒙 𝒚 −𝝅 𝑼𝒏𝒅 −𝟑𝝅/𝟒 𝟐 −𝝅/𝟐 𝟎 −𝝅/𝟒 −𝟐 𝒚= 𝐭𝐚𝐧 𝒙+𝝅/𝟐 𝒙 𝒚 𝑼𝒏𝒅 −𝟏 𝑪 𝟎 𝟏 𝒙 −𝝅 −𝟑𝝅/𝟒 −𝝅/𝟐 −𝝅/𝟒 𝟎 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Your Turn Given 𝒚= 𝐬𝐞𝐜 𝟐 𝒙+𝝅 +𝟐 from −𝟐𝝅, 𝟐𝝅 and identify period, vertical shift, phase shift, domain, and range Amplitude Period Vertical Shift Phase Shift Anchor Points Domain Range 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions

§4.6B: Graphing Trig Functions Assignment Worksheet 2/22/2019 5:17 PM §4.6B: Graphing Trig Functions