Chapter 35 The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity.

Slides:



Advertisements
Similar presentations
Young’s Experiment ․Young’s Double-Slit interference Exp.
Advertisements

Waves (in general) sine waves are nice
Happyphysics.com Physics Lecture Resources Prof. Mineesh Gulati Head-Physics Wing Happy Model Hr. Sec. School, Udhampur, J&K Website: happyphysics.com.
Wave Nature of Light  Refraction  Interference  Young’s double slit experiment  Diffraction  Single slit diffraction  Diffraction grating.
Chapter 35 The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity.
Chapter 24 Wave Nature of Light: © 2006, B.J. Lieb
The Wave Nature of Light
The Wave Nature of Light
PHYS 1442 – Section 004 Lecture #21 Wednesday April 9, 2014 Dr. Andrew Brandt Ch 24 Wave Nature of Light Diffraction by a Single Slit or Disk Diffraction.
AP Physics Mr. Jean March 30 th, The plan: Review of slit patterns & interference of light particles. Quest Assignment #2 Polarizer More interference.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 28 Physics, 4 th Edition James S. Walker.
Chapter 34 The Wave Nature of Light; Interference
Chapter 34 The Wave Nature of Light; Interference
Interference Physics 202 Professor Lee Carkner Lecture 22.
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
Interference Physics 202 Professor Lee Carkner Lecture 24.
Interference Physics 202 Professor Lee Carkner Lecture 24.
Lecture 3 – Physical Optics
Chapter 25: Interference and Diffraction
B. Wave optics Huygens’ principle
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
11 反射、折射、干涉、繞射. Sections  反射 (reflection) 與折射 (refraction)  干涉 (interference)  繞射 (diffraction)
Chapter 37 Wave Optics. Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics.  Sometimes called.
Copyright © 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction.
The wave nature of light Interference Diffraction Polarization
Lecture 15 Interference Chp. 35 Topics –Interference from thin films –Due to the wave nature of light –Change in wavelength and phase change in a medium.
Interference and the Wave Nature of Light
CHAPTER 37 : INTERFERENCE OF LIGHT WAVES
1 Chapter 35 The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to.
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing.
Diffraction is the bending of waves around obstacles or the edges of an opening. Huygen’s Principle - Every point on a wave front acts as a source of tiny.
S-110 A.What does the term Interference mean when applied to waves? B.Describe what you think would happened when light interferes constructively. C.Describe.
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
Interference in Thin Films, final
Ch 16 Interference. Diffraction is the bending of waves around obstacles or the edges of an opening. Huygen’s Principle - Every point on a wave front.
1© Manhattan Press (H.K.) Ltd. Young’s double slit experiment Young’s double slit experiment 9.10 Interference of light waves Relationship between x,,
Lecture Nine: Interference of Light Waves: I
The Wave Nature of Light
Lecture 24 Interference of Light.
Physics 1C Lecture 27A. Interference Treating light as a particle (geometrical optics) helped us to understand how images are formed by lenses and mirrors.
Announcements HW set 10 due this week; covers Ch (skip 24.8) and Office hours: Prof. Kumar’s Tea and Cookies 5-6 pm today My office hours.
Interference and Diffraction
Sunlight, as the rainbow shows us, is a composite
Chapter 24 Wave Optics. General Physics Review – optical elements.
Chapter 24 The Wave Nature of Light
Physical optics Done by P G LOGAN. Physical optics Physical optics deals with phenomena that depend on the wave nature of light. There are three types.
Double Rainbow 1. 2 Bar at the Folies Bergères’ by Edouard Manet (1882)
Chapters 36 & 37 Interference and Diffraction. Combination of Waves In general, when we combine two waves to form a composite wave, the composite wave.
B. Wave optics Huygens’ principle
The wave nature of light Interference Diffraction Polarization
Ch 16 Interference.
Lens Equation ( < 0 ).
Lecture Outlines Chapter 28 Physics, 3rd Edition James S. Walker
Interference of Light Waves
Interference Requirements
Chapter 36 In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single.
Interference of Light Waves
Interference of Light.
Interference Introduction to Optics Coherent source
Interference and Diffraction
Interference of Light Waves
1. Waves and Particles 2. Interference of Waves
Double Rainbow.
B. Wave optics Huygens’ principle
15-1: Interference Interference, a phenomenon that occurs when two light beams meet. If the two beams enhance each other to give a brighter beam, it is.
Presentation transcript:

Chapter 35 The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures. These phenomena cannot be explained using simple geometrical optics, and are based on the wave nature of light. In this chapter we explore the wave nature of light and examine several key optical interference phenomena. Interference 35-

Light as a Wave Huygen’s Principle: All points on a wavefront serve as point sources of spherical secondary wavelets. After time t, the new position of the wavefront will be that of a surface tangent to these secondary wavelets. Fig. 35-2 35-

Law of Refraction Index of Refraction: Law of Refraction: Fig. 35-3

Wavelength and Index of Refraction The frequency of light in a medium is the same as it is in vacuum Fig. 35-4 Since wavelengths in n1 and n2 are different, the two beams may no longer be in phase 35-

Rainbows and Optical Interference Fig. 35-5 The geometrical explanation of rainbows given in Ch. 34 is incomplete. Interference, constructive for some colors at certain angles, destructive for other colors at the same angles is an important component of rainbows 35-

Diffraction For plane waves entering a single slit, the waves emerging from the slit start spreading out, diffracting. Fig. 35-7 35-

Young’s Experiment For waves entering a two slit, the emerging waves interfere and form an interference (diffraction) pattern. Fig. 35-8 35-

Locating Fringes Path Length Difference: The phase difference between two waves can change if the waves travel paths of different lengths. What appears at each point on the screen is determined by the path length difference DL of the rays reaching that point. Fig. 35-10 Path Length Difference: 35-

Locating Fringes Maxima-bright fringes: Minima-dark fringes: Fig. 35-10 Maxima-bright fringes: Minima-dark fringes: 35-

Coherence Two sources to produce an interference that is stable over time, if their light has a phase relationship that does not change with time: E(t)=E0cos(wt+f) Coherent sources: Phase f must be well defined and constant. When waves from coherent sources meet, stable interference can occur. Sunlight is coherent over a short length and time range. Since laser light is produced by cooperative behavior of atoms, it is coherent of long length and time ranges Incoherent sources: f jitters randomly in time, no stable interference occurs 35-

Intensity in Double-Slit Interference Fig. 35-12 35-

Proof of Eqs. 35-22 and 35-23 Fig. 35-13 Eq. 35-22 Eq. 35-23 35-

hitt In a Young's double-slit experiment the center of a bright fringe occurs wherever waves from the slits differ in the distance they travel by a multiple of: A. a fourth of a wavelength B. a half a wavelength C. a wavelength D. three-fourths of a wavelength E. none of the above

Combining More Than Two Waves In general, we may want to combine more than two waves. For example, there may be more than two slits. Procedure: Construct a series of phasors representing the waves to be combined. Draw them end to end, maintaining proper phase relationships between adjacent phasors. Construct the sum of this array. The length of this vector sum gives the amplitude of the resulting phasor. The angle between the vector sum and the first phasor is the phase of the resultant with respect to the first. The projection of this vector sum phasor on the vertical axis gives the time variation of the resultant wave. E1 E2 E3 E4 E 35-

Interference from Thin Films Fig. 35-15 35-

Reflection Phase Shifts n1 > n2 Fig. 35-16 Reflection Reflection Phase Shift Off lower index 0 Off higher index 0.5 wavelength n1 n2 n1 < n2 35-

Equations for Thin-Film Interference Fig. 35-17 Three effects can contribute to the phase difference between r1 and r2. Differences in reflection conditions Difference in path length traveled. Differences in the media in which the waves travel. One must use the wavelength in each medium (l / n), to calculate the phase. ½ wavelength phase difference to difference in reflection of r1 and r2 35-

Film Thickness Much Less Than l If L much less than l, for example L < 0.1l, than phase difference due to the path difference 2L can be neglected. Phase difference between r1 and r2 will always be ½ wavelength  destructive interference  film will appear dark when viewed from illuminated side. r2 r1 35-

Color Shifting by Morpho Butterflies and Paper Currencies Fig. 35-19 For the same path difference, different wavelengths (colors) of light will interfere differently. For example, 2L could be an integer number of wavelengths for red light but a half integer wavelengths for blue. Furthermore, the path difference 2L will change when light strikes the surface at different angles, again changing the interference condition for the different wavelengths of light. 35-

Problem Solving Tactic 1: Thin-Film Equations Equations 35-36 and 35-37 are for the special case of a higher index film flanked by air on both sides. For multilayer systems, this is not always the case and these equations are not appropriate. What happens to these equations for the following system? L r2 r1 n1=1 n2=1.5 n3=1.7 35-

Michelson Interferometer Fig. 35-20 Michelson Interferometer For each change in path by 1l, the interference pattern shifts by one fringe at T. By counting the fringe change, one determines Nm- Na and can then solve for L in terms of l and n. 35-