Example 1A: Using the Converse of the Corresponding Angles Postulate

Slides:



Advertisements
Similar presentations
Proving Lines Parallel
Advertisements

3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x
CONFIDENTIAL 1 Geometry Proving Lines Parallel. CONFIDENTIAL 2 Warm Up Identify each of the following: 1) One pair of parallel segments 2) One pair of.
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x Solve each equation. 3. 5y = x + 15 = 90 Solve the systems of equations. 5. x < 13 y =
Proof and Perpendicular Lines
Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Holt McDougal Geometry 3-3 Proving Lines Parallel Bellringer State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°,
Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary. 3. If AB + BC =
Proving Lines Parallel (3-3)
Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If m  A + m  B = 90°, then  A and  B are complementary. 3. If AB.
Proving Lines Parallel 3.4. Use the angles formed by a transversal to prove two lines are parallel. Objective.
Holt Geometry 3-3 Proving Lines Parallel Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7 same-side int s corr. s.
Holt Geometry 3-6 Perpendicular Lines 3-6 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Holt McDougal Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
3-3 PROVING LINES PARALLEL CHAPTER 3. SAT PROBLEM OF THE DAY.
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary.
3-5 Using Properties of Parallel Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 3-4 Perpendicular Lines 3-4 Perpendicular Lines Holt Geometry.
§3.4, Perpendicular Lines 3-4 Perpendicular Lines
WARM UP Find the angle measurement: 1. m JKL 127° L x° K  J m JKL = 127.
Holt McDougal Geometry 3-4 Perpendicular Lines 3-4 Perpendicular Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz.
Perpendicular Lines Unit 2-4. Warm Up Solve each inequality. 1. x – 5 < x + 1 < x Solve each equation. 3. 5y = x + 15 = 90 Solve the systems.
3-4 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Proving Lines Parallel
Objective Use the angles formed by a transversal to prove two lines are parallel.
Warm Up State the converse of each statement.
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3.4 Perpendicular Lines 3-4 Perpendicular Lines Holt McDougal Geometry
Proving Lines Parallel
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Warm Up State the converse of each statement.
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Pearson Unit 1 Topic 3: Parallel & Perpendicular Lines 3-3: Proving Lines Parallel Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Objective Prove and apply theorems about perpendicular lines.
3.4 Perpendicular lines.
Drill: Wednesday, 11/9 State the converse of each statement.
Proving Lines Parallel
Warm Up Solve each inequality. 1. x – 5 < 8 x < 13
Proving Lines Parallel
Proving Lines Parallel
Day 7 (2/20/18) Math 132 CCBC Dundalk.
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Warm Up Solve each inequality. 1. x – 5 < x + 1 < x
Proving Lines Parallel
Objective Use the angles formed by a transversal to prove two lines are parallel.
Objective Use the angles formed by a transversal to prove two lines are parallel.
Proving Lines Parallel
Proving Lines Parallel
Examples.
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Proving Lines Parallel
Objectives Identify parallel, perpendicular, and skew lines.
Proving Lines Parallel
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Lesson Presentation Holt Geometry.
Proving Lines Parallel
Proving Lines Parallel
Objective Use the angles formed by a transversal to prove two lines are parallel.
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
3-4 Perpendicular Lines Warm Up Lesson Presentation Lesson Quiz
Presentation transcript:

Example 1A: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. 4  8 4  8 4 and 8 are corresponding angles. ℓ || m Conv. of Corr. s Post.

Example 1B: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. m3 = (4x – 80)°, m7 = (3x – 50)°, x = 30 m3 = 4(30) – 80 = 40 Substitute 30 for x. m8 = 3(30) – 50 = 40 Substitute 30 for x. m3 = m8 Trans. Prop. of Equality 3  8 Def. of  s. ℓ || m Conv. of Corr. s Post.

Check It Out! Example 1a Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. m1 = m3 1  3 1 and 3 are corresponding angles. ℓ || m Conv. of Corr. s Post.

Check It Out! Example 1b Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. m7 = (4x + 25)°, m5 = (5x + 12)°, x = 13 m7 = 4(13) + 25 = 77 Substitute 13 for x. m5 = 5(13) + 12 = 77 Substitute 13 for x. m7 = m5 Trans. Prop. of Equality 7  5 Def. of  s. ℓ || m Conv. of Corr. s Post.

The Converse of the Corresponding Angles Postulate is used to construct parallel lines. The Parallel Postulate guarantees that for any line ℓ, you can always construct a parallel line through a point that is not on ℓ.

Example 2A: Determining Whether Lines are Parallel Use the given information and the theorems you have learned to show that r || s. 4  8 4  8 4 and 8 are alternate exterior angles. r || s Conv. Of Alt. Int. s Thm.

Example 2B: Determining Whether Lines are Parallel Use the given information and the theorems you have learned to show that r || s. m2 = (10x + 8)°, m3 = (25x – 3)°, x = 5 m2 = 10x + 8 = 10(5) + 8 = 58 Substitute 5 for x. m3 = 25x – 3 = 25(5) – 3 = 122 Substitute 5 for x.

Example 2B Continued Use the given information and the theorems you have learned to show that r || s. m2 = (10x + 8)°, m3 = (25x – 3)°, x = 5 m2 + m3 = 58° + 122° = 180° 2 and 3 are same-side interior angles. r || s Conv. of Same-Side Int. s Thm.

Check It Out! Example 2a Refer to the diagram. Use the given information and the theorems you have learned to show that r || s. m4 = m8 4  8 Congruent angles 4  8 4 and 8 are alternate exterior angles. r || s Conv. of Alt. Int. s Thm.

Check It Out! Example 2b Refer to the diagram. Use the given information and the theorems you have learned to show that r || s. m3 = 2x, m7 = (x + 50), x = 50 m3 = 2x = 2(50) = 100° Substitute 50 for x. m7 = x + 50 = 50 + 50 = 100° Substitute 5 for x. m3 = 100 and m7 = 100 3  7 r||s Conv. of the Alt. Int. s Thm.

Example 3: Proving Lines Parallel Given: p || r , 1  3 Prove: ℓ || m

Example 3 Continued Statements Reasons 1. p || r 1. Given 2. 3  2 2. Alt. Ext. s Thm. 3. 1  3 3. Given 4. 1  2 4. Trans. Prop. of  5. ℓ ||m 5. Conv. of Corr. s Post.

Check It Out! Example 3 Given: 1  4, 3 and 4 are supplementary. Prove: ℓ || m

Check It Out! Example 3 Continued Statements Reasons 1. 1  4 1. Given 2. m1 = m4 2. Def.  s 3. 3 and 4 are supp. 3. Given 4. m3 + m4 = 180 4. Trans. Prop. of  5. m3 + m1 = 180 5. Substitution 6. m2 = m3 6. Vert.s Thm. 7. m2 + m1 = 180 7. Substitution 8. ℓ || m 8. Conv. of Same-Side Interior s Post.

Example 4: Carpentry Application A carpenter is creating a woodwork pattern and wants two long pieces to be parallel. m1= (8x + 20)° and m2 = (2x + 10)°. If x = 15, show that pieces A and B are parallel.

Substitute 15 for x in each expression. Example 4 Continued A line through the center of the horizontal piece forms a transversal to pieces A and B. 1 and 2 are same-side interior angles. If 1 and 2 are supplementary, then pieces A and B are parallel. Substitute 15 for x in each expression.

Example 4 Continued m1 = 8x + 20 = 8(15) + 20 = 140 Substitute 15 for x. m2 = 2x + 10 = 2(15) + 10 = 40 Substitute 15 for x. m1+m2 = 140 + 40 1 and 2 are supplementary. = 180 The same-side interior angles are supplementary, so pieces A and B are parallel by the Converse of the Same-Side Interior Angles Theorem.

Check It Out! Example 4 What if…? Suppose the corresponding angles on the opposite side of the boat measure (4y – 2)° and (3y + 6)°, where y = 8. Show that the oars are parallel. 4y – 2 = 4(8) – 2 = 30° 3y + 6 = 3(8) + 6 = 30° The angles are congruent, so the oars are || by the Conv. of the Corr. s Post.

Example 1: Distance From a Point to a Line A. Name the shortest segment from point A to BC. The shortest distance from a point to a line is the length of the perpendicular segment, so AP is the shortest segment from A to BC. B. Write and solve an inequality for x. AC > AP AP is the shortest segment. x – 8 > 12 Substitute x – 8 for AC and 12 for AP. + 8 Add 8 to both sides of the inequality. x > 20

Check It Out! Example 1 A. Name the shortest segment from point A to BC. The shortest distance from a point to a line is the length of the perpendicular segment, so AB is the shortest segment from A to BC. B. Write and solve an inequality for x. AC > AB AB is the shortest segment. 12 > x – 5 Substitute 12 for AC and x – 5 for AB. + 5 Add 5 to both sides of the inequality. 17 > x

HYPOTHESIS CONCLUSION

Example 2: Proving Properties of Lines Write a two-column proof. Given: r || s, 1  2 Prove: r  t

Example 2 Continued Statements Reasons 1. r || s, 1  2 1. Given 2. 2  3 2. Corr. s Post. 3. 1  3 3. Trans. Prop. of  4. 2 intersecting lines form lin. pair of  s  lines . 4. r  t

Check It Out! Example 2 Write a two-column proof. Given: Prove:

Check It Out! Example 2 Continued Statements Reasons 1. EHF  HFG 1. Given 2. 2. Conv. of Alt. Int. s Thm. 3. 3. Given 4. 4.  Transv. Thm.

Example 3: Carpentry Application A carpenter’s square forms a right angle. A carpenter places the square so that one side is parallel to an edge of a board, and then draws a line along the other side of the square. Then he slides the square to the right and draws a second line. Why must the two lines be parallel? Both lines are perpendicular to the edge of the board. If two coplanar lines are perpendicular to the same line, then the two lines are parallel to each other, so the lines must be parallel to each other.

Check It Out! Example 3 A swimmer who gets caught in a rip current should swim in a direction perpendicular to the current. Why should the path of the swimmer be parallel to the shoreline?

Check It Out! Example 3 Continued The shoreline and the path of the swimmer should both be  to the current, so they should be || to each other.