Lower Ip Long Pulse L-mode and H-mode Advanced Scenarios

Slides:



Advertisements
Similar presentations
Physics Basis of FIRE Next Step Burning Plasma Experiment Charles Kessel Princeton Plasma Physics Laboratory U.S.-Japan Workshop on Fusion Power Plant.
Advertisements

Stability, Transport, and Conrol for the discussion Y. Miura IEA/LT Workshop (W59) combined with DOE/JAERI Technical Planning of Tokamak Experiments (FP1-2)
XP 1157 Increasing the CHI start-up current magnitude in NSTX B.A. Nelson et al. 1.
TSC time dependent free-boundary simulations of the ACT1 (aggr phys) plasma and disruptions C. Kessel, PPPL ARIES Project Meeting, Jan 23-24, 2012, UCSD.
C. Kessel Princeton Plasma Physics Laboratory For the NSTX National Team DOE Review of NSTX Five-Year Research Program Proposal June 30 – July 2, 2003.
Advanced Tokamak Plasmas and the Fusion Ignition Research Experiment Charles Kessel Princeton Plasma Physics Laboratory Spring APS, Philadelphia, 4/5/2003.
Analysis and Simulations of the ITER Hybrid Scenario C. Kessel, R. Budny, K. Indireshkumar Princeton Plasma Physics Laboratory, USA ITPA Topical Group.
Advanced Tokamak Regimes in the Fusion Ignition Research Experiment (FIRE) 30th Conference on Controlled Fusion and Plasma Physics St. Petersburg, Russia.
R. Piovan “RFX-mod: what does...”RFX 2009 Programme Workshop Padova, Jan RFX – mod: what does the present device allow to do? R. Piovan.
Integrated Modeling and Simulations of ITER Burning Plasma Scenarios C. E. Kessel, R. V. Budny, K. Indireshkumar, D. Meade Princeton Plasma Physics Laboratory.
Mid-Run Assessment - ISD S. Kaye, D. Gates 10 May 2006.
NSTX-U NSTX-U PAC-31 Response to Questions – Day 1 Summary of Answers Q: Maximum pulse length at 1MA, 0.75T, 1 st year parameters? –A1: Full 5 seconds.
ITER Standard H-mode, Hybrid and Steady State WDB Submissions R. Budny, C. Kessel PPPL ITPA Modeling Topical Working Group Session on ITER Simulations.
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
PF1A upgrade physics review Presented by D. A. Gates With input from J.E. Menard and C.E. Kessel 10/27/04.
1 Instabilities in the Long Pulse Discharges on the HT-7 X.Gao and HT-7 Team Institute of Plasma Physics, Chinese Academy of Sciences, P.O.Box 1126, Hefei,
1 Confinement Studies on TJ-II Stellarator with OH Induced Current F. Castejón, D. López-Bruna, T. Estrada, J. Romero and E. Ascasíbar Laboratorio Nacional.
Simulation and Analysis of the Hybrid Operating Mode in ITER C. Kessel, R. Budny, and K. Indireshkumar Princeton Plasma Physics Laboratory Symposium On.
ASIPP YOUNIS Jawad, WAN Baonian, LIN Shiyao, SHI Yuejiang, and HT-7 Team HT-7 Study of LHW current drive efficiency and fast electron distribution.
ASIPP Long pulse and high power LHCD plasmas on HT-7 Xu Qiang.
CHI Run Summary for March 10-12, 31 & April 9, 2008 Flux savings from inductive drive of a Transient CHI started plasma (XP817) R. Raman, B.A. Nelson,
OPERATIONAL SCENARIO of KTM Dokuka V.N., Khayrutdinov R.R. TRINITI, Russia O u t l i n e Goal of the work The DINA code capabilities Formulation of the.
ASIPP HT-7 The effect of alleviating the heat load of the first wall by impurity injection The effect of alleviating the heat load of the first wall by.
Comprehensive ITER Approach to Burn L. P. Ku, S. Jardin, C. Kessel, D. McCune Princeton Plasma Physics Laboratory SWIM Project Meeting Oct , 2007.
JT-60U -1- Access to High  p (advanced inductive) and Reversed Shear (steady state) plasmas in JT-60U S. Ide for the JT-60 Team Japan Atomic Energy Agency.
HL-2A Heating & Current Driving by LHW and ECW study on HL-2A Bai Xingyu, HL-2A heating team.
Work with TSC Yong Guo. Introduction Non-inductive current for NSTX TSC model for EAST Simulation for EAST experiment Voltage second consumption for different.
RFX-mod programme workshop, January 2009 Scenario and operational issues for high current L. Zanotto, R. Cavazzana, S. Dal Bello, F. Milani.
Low-density Start-up D. Mueller, M. Bell, S. Gerhardt, J. Menard, R. Raman, S. Sabbagh NSTX FY12 low density discussion: May 12, 2011.
Steady State Discharge Modeling for KSTAR C. Kessel Princeton Plasma Physics Laboratory US-Korea Workshop - KSTAR Collaborations, 5/19-20/2004.
Physics Analysis and Flexibility Issues for FIRE NSO PAC-2 Meeting January 17-18, 2001 S. C. Jardin with input from C.Kessel, J.Mandrekas, D.Meade, and.
1 Feature of Energy Transport in NSTX plasma Siye Ding under instruction of Stanley Kaye 05/04/09.
Association Euratom-Cea ITPA CDBM group meeting, St Petersburg, October CRONOS simulations of ITER AT scenarios F. Imbeaux, J.F. Artaud, V. Basiuk,
Heating and current drive requirements towards Steady State operation in ITER Francesca Poli C. Kessel, P. Bonoli, D. Batchelor, B. Harvey Work supported.
Optimization of a High-  Steady-State Tokamak Burning Plasma Experiment Based on a High-  Steady-State Tokamak Power Plant D. M. Meade, C. Kessel, S.
MHD Issues and Control in FIRE C. Kessel Princeton Plasma Physics Laboratory Workshop on Active Control of MHD Stability Austin, TX 11/3-5/2003.
Solenoid Free Plasma Start-up Mid-Run Summary (FY 2008) R. Raman and D. Mueller Univ. of Wash. / PPPL 16 April 2008, PPPL 1 Supported by Office of Science.
20th IAEA Fusion Energy Conference, 2004 Naka Fusion Research Establishment, Japan Atomic Energy Research Institute Stationary high confinement plasmas.
FIRE Advanced Tokamak Progress C. Kessel Princeton Plasma Physics Laboratory NSO PAC 2/27-28/2003, General Atomics 1.0D Operating Space 2.PF Coils 3.Equilibrium/Stability.
Advanced Tokamak Modeling for FIRE C. Kessel, PPPL NSO/PAC Meeting, University of Wisconsin, July 10-11, 2001.
1PAC37, non-inductive ramp-up, Francesca Poli, Jan Francesca Poli, Gary Taylor for the Integrated Scenarios science group ECH/EBWH Research Plans.
Simulation of Non-Solenoidal Current Rampup in NSTX C. E. Kessel and NSTX Team Princeton Plasma Physics Laboratory APS-DPP Annual Meeting, Savannah, Georgia,
Integrated Plasma Simulations C. E. Kessel Princeton Plasma Physics Laboratory Workshop Toward an Integrated Plasma Simulation Oak Ridge, TN November 7-9,
1 ASTRA simulations of ITER long pulse scenarios V. Leonov ASTRA simulations of ITER long pulse scenarios V. Leonov Kurchatov Institute, Moscow, Russia.
AES, ANL, Boeing, Columbia U., CTD, GA, GIT, LLNL, INEEL, MIT, ORNL, PPPL, SNL, SRS, UCLA, UCSD, UIIC, UWisc FIRE Collaboration FIRE.
T. Biewer, Sep. 21 st, 2004 NSTX Results Review of 11 Dependence of Edge Flow on Magnetic Configuration in NSTX T.M. Biewer, R.E. Bell, D. Gates,
Lower Hybrid Wave Coupling and Current Drive Experiments in HT-7 Tokamak Weici Shen Jiafang Shan Handong Xu Min Jiang HT-7 Team Institute of Plasma Physics,
Long Pulse High Performance Plasma Scenario Development for NSTX C. Kessel and S. Kaye - providing TRANSP runs of specific discharges S.
9-12 Sept. 2002E. BARBAT0-ENEA, TTF, Cordoba1 Electron Internal Transport barriers by LHCD and ECRH in FTU-high density plasmas E. Barbato Associazione.
0.5 T and 1.0 T ECH Plasmas in HSX
Species Effects on the H-mode Threshold and ELM Behavior in H(He3) and He4(H) Plasmas in C-Mod J A Snipes, P Lamalle ITER Organization.
Advanced Scenarios: ITER-like Hybrid at Low Bt without LH
A.D. Turnbull, R. Buttery, M. Choi, L.L Lao, S. Smith, H. St John
High Bootstrap Fraction Plasmas with ITBs
Investigation of triggering mechanisms for internal transport barriers in Alcator C-Mod K. Zhurovich C. Fiore, D. Ernst, P. Bonoli, M. Greenwald, A. Hubbard,
Diagnosis of Pellet Induced Bootstrap Current with Alfvén Cascades
IPP report – C. García-Rosales
Lower Ip Long Pulse H+ITB Advanced Scenarios
Determining confinement and stability of q(0)>1 regimes produced
Determining the transport of fast electrons in LHCD regimes
ITB Control with LH Heating & Current Drive
Measurements of Current Driven by LH Waves in Alcator C-Mod
Integrated Operation of Steady-state Long Pulse H-mode in EAST
Jerry Hughes C-Mod Ideas Forum December 15, 2006
C. Kessel, PPPL Standard breakdown is done at 5.4 T
Proposal #2: AT scenarios, Rerun 600 and 450 kA discharges with PLH = 1 MW C. Kessel,  PPPL Previous discharges with varying rampups at 600 and 450.
Joint Experiment IOS-4.1 Aims:
Suppression of ELM’s is a major issue for ITER and beyond
Continued exploration of pedestal structure and edge relaxation mechanisms at lower edge collisionality  J.W. Hughes, A. Hubbard, B. LaBombard, J. Terry,
Presentation transcript:

Lower Ip Long Pulse L-mode and H-mode Advanced Scenarios C. Kessel*, A. Hubbard *Princeton Plasma Physics Laboratory C-MOD Ideas Forum, December 13-15, 2007

Goals -- 1-2 Run Days Examine lower Ip discharges to obtain higher boostrap current and higher non-inductive current fractions Determine energy confinement in the lower Ip plasmas with ICRF power scan Examine the benefits of longer Ip rampup times to control the q-profile with and without LHCD in the rampup -- density control to maximize effect of LHCD Produce these discharge in both L-mode and H-mode to determine if there are advantages to control the transport regime Extend the pulse lengths to maximize the number of current relaxation times and to allow for development of modulation/control techniques in the advanced scenarios

Low Ip Long Pulse L-mode and H-mode Advanced Scenarios Establish lower Ip ramps at different ramp rates, to 600, 450 and 300 kA -- document q-profile and loop voltage, both with/without LH injection in the ramp standard 800 kA 450 kA, for example Ip PLH PIC 100 250 500 750 1000 Time, ms

Low Ip Long Pulse L-mode and H-mode Scenarios Establish longest pulse length available at lower Ip values, BT values, and with L-mode (low heating) and H-mode (no LH) OH flux swing TF flattop PFC heating Other??? standard 800 kA Ip 450 kA, for example PIC 100 1500 Time, ms

TSC-LSC Simulation of LHCD for Ip = 600 kA H-mode PIC = 3.5 MW, PLH = 2 MW n|| = 2.5 (ILH = 144 kA) 1D Fokker-Planck may under-estimate the LHCD -- compare with CQL3D LH providing good boost to NI current qo close to 1, good hybrid target