Proving Lines Parallel

Slides:



Advertisements
Similar presentations
Proving Lines Parallel
Advertisements

12. Conv. of corr. s post. 14. Both angles = 124°, Conv. of corr
CONFIDENTIAL 1 Geometry Proving Lines Parallel. CONFIDENTIAL 2 Warm Up Identify each of the following: 1) One pair of parallel segments 2) One pair of.
Angles Formed by Parallel Lines and Transversals 3-2
Use Parallel Lines and Transversals 3-2
Objective Use the angles formed by a transversal to prove two lines are parallel.
Holt McDougal Geometry 3-3 Proving Lines Parallel Bellringer State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°,
Proving Lines Parallel (3-3)
Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If m  A + m  B = 90°, then  A and  B are complementary. 3. If AB.
Proving Lines Parallel 3.4. Use the angles formed by a transversal to prove two lines are parallel. Objective.
Holt Geometry 3-3 Proving Lines Parallel Warm Up Identify each angle pair. 1. 1 and 3 2. 3 and 6 3. 4 and 5 4. 6 and 7 same-side int s corr. s.
Holt McDougal Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson.
3-3 PROVING LINES PARALLEL CHAPTER 3. SAT PROBLEM OF THE DAY.
Proving Lines Parallel
Holt McDougal Geometry 3-3 Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°,
Proving Lines Parallel
Proving Lines Parallel Warm Up State the converse of each statement. 1. If a = b, then a + c = b + c. 2. If mA + mB = 90°, then A and B are complementary.
Example 2: Classifying Pairs of Angles
3-5 Using Properties of Parallel Lines Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Holt Geometry 3-3 Proving Lines Parallel 3-3 Proving Lines Parallel Holt Geometry.
WARM UP Find the angle measurement: 1. m JKL 127° L x° K  J m JKL = 127.
3-4 Proving Lines Parallel Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz.
Proving Lines Parallel
Flowchart and Paragraph Proofs
Angles Formed by Parallel Lines and Transversals 3-2
3.3 Proving Lines are Parallel
Objective Use the angles formed by a transversal to prove two lines are parallel.
Warm Up State the converse of each statement.
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Warm Up State the converse of each statement.
Pearson Unit 1 Topic 3: Parallel & Perpendicular Lines 3-3: Proving Lines Parallel Pearson Texas Geometry ©2016 Holt Geometry Texas ©2007.
Drill: Wednesday, 11/9 State the converse of each statement.
Proving Lines Parallel
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Example 1A: Using the Converse of the Corresponding Angles Postulate
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Day 7 (2/20/18) Math 132 CCBC Dundalk.
Proving Lines Parallel
Objective Use the angles formed by a transversal to prove two lines are parallel.
Objective Use the angles formed by a transversal to prove two lines are parallel.
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
Examples.
Proving Lines Parallel
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Proving Lines Parallel
Proving Lines Parallel
Proving Lines Parallel
3.2 – Use Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals 3-2
Angles Formed by Parallel Lines and Transversals
Objective Use the angles formed by a transversal to prove two lines are parallel.
Angles Formed by Parallel Lines and Transversals 3-2
Presentation transcript:

Proving Lines Parallel 3-3 Proving Lines Parallel Warm Up Lesson Presentation Lesson Quiz Holt McDougal Geometry Holt Geometry

Objective Use the angles formed by a transversal to prove two lines are parallel.

Example 1A: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. 4  8 4  8 4 and 8 are corresponding angles. ℓ || m Conv. of Corr. s Post.

Example 1B: Using the Converse of the Corresponding Angles Postulate Use the Converse of the Corresponding Angles Postulate and the given information to show that ℓ || m. m3 = (4x – 80)°, m7 = (3x – 50)°, x = 30 m3 = 4(30) – 80 = 40 Substitute 30 for x. m8 = 3(30) – 50 = 40 Substitute 30 for x. m3 = m8 Trans. Prop. of Equality 3  8 Def. of  s. ℓ || m Conv. of Corr. s Post.

Example 2A: Determining Whether Lines are Parallel Use the given information and the theorems you have learned to show that r || s. 4  8 4  8 4 and 8 are alternate exterior angles. r || s Conv. Of Alt. Int. s Thm.

Example 2B Continued Use the given information and the theorems you have learned to show that r || s. m2 = (10x + 8)°, m3 = (25x – 3)°, x = 5 m2 + m3 = 58° + 122° = 180° 2 and 3 are same-side interior angles. r || s Conv. of Same-Side Int. s Thm.

Example 3: Proving Lines Parallel Given: p || r , 1  3 Prove: ℓ || m

Example 3 Continued Statements Reasons 1. p || r 1. Given 2. 3  2 2. Alt. Ext. s Thm. 3. 1  3 3. Given 4. 1  2 4. Trans. Prop. of  5. ℓ ||m 5. Conv. of Corr. s Post.

Example 4: Carpentry Application A carpenter is creating a woodwork pattern and wants two long pieces to be parallel. m1= (8x + 20)° and m2 = (2x + 10)°. If x = 15, show that pieces A and B are parallel.

Substitute 15 for x in each expression. Example 4 Continued A line through the center of the horizontal piece forms a transversal to pieces A and B. 1 and 2 are same-side interior angles. If 1 and 2 are supplementary, then pieces A and B are parallel. Substitute 15 for x in each expression.

Example 4 Continued m1 = 8x + 20 = 8(15) + 20 = 140 Substitute 15 for x. m2 = 2x + 10 = 2(15) + 10 = 40 Substitute 15 for x. m1+m2 = 140 + 40 1 and 2 are supplementary. = 180 The same-side interior angles are supplementary, so pieces A and B are parallel by the Converse of the Same-Side Interior Angles Theorem.