RECTILINEAR KINEMATICS: CONTINUOUS MOTION

Slides:



Advertisements
Similar presentations
POSITION AND DISPLACEMENT A particle travels along a straight-line path defined by the coordinate axis s. The position of the particle at any instant,
Advertisements

Kinematics of Particles
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections )
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
RIGID BODY MOTION: TRANSLATION & ROTATION
Kinematics of Particles Lecture II. Subjects Covered in Kinematics of Particles Rectilinear motion Curvilinear motion Rectangular coords n-t coords Polar.
Motion Along a Straight Line
RECTILINEAR KINEMATICS: ERRATIC MOTION Today’s Objectives: Students will be able to: 1.Determine position, velocity, and acceleration of a particle using.
RECTILINEAR KINEMATICS: ERRATIC MOTION (Section 12.3) Today’s Objectives: Students will be able to determine position, velocity, and acceleration of a.
RECTILINEAR KINEMATICS: ERRATIC MOTION (Section 12.3)
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION Today’s Objectives: Students will be able to: 1.Find the kinematic quantities (position, displacement,
MAE 242 Dynamics – Section I Dr. Kostas Sierros. Important information Room: G-19 ESB Phone: ext 2310 HELP:
Displacement Speed and Velocity Acceleration Equations of Kinematics with Constant A Freely Falling Bodies Graphical Analysis of Velocity and Acceleration.
CURVILINEAR MOTION: NORMAL AND TANGENTIAL COMPONENTS
NORMAL AND TANGENTIAL COMPONENTS
1 Chapter 2: Motion along a Straight Line. 2 Displacement, Time, Velocity.
Rigid Body Dynamics (MENG233) Instructor: Dr. Mostafa Ranjbar.
Chapter 2 Motion in One Dimension. Kinematics In kinematics, you are interested in the description of motion Not concerned with the cause of the motion.
Chapter 2 Motion Along a Line. MFMcGraw- PHY 1410Ch_02b-Revised 5/31/20102 Motion Along a Line Position & Displacement Speed & Velocity Acceleration Describing.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections ) Today’s Objectives: Students will be able to find the kinematic quantities.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Mechanics Topic 2.1 Kinematics. Kinematic Concepts: Displacement Is a measured distance in a given direction It is a vector quantity It tells us not only.
As a first step in studying classical mechanics, we describe motion in terms of space and time while ignoring the agents that caused that motion. This.
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: 1.Describe the motion of a particle traveling along.
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
CURVILINEAR MOTION: GENERAL & RECTANGULAR COMPONENTS Today’s Objectives: Students will be able to: 1.Describe the motion of a particle traveling along.
RECTILINEAR KINEMATICS: ERRATIC MOTION
An Overview of Mechanics Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics – concerned with the geometric aspects of motion 2. Kinetics.
Mechanics for Engineers: Dynamics, 13th SI Edition R. C. Hibbeler and Kai Beng Yap © Pearson Education South Asia Pte Ltd All rights reserved. CURVILINEAR.
CURVILINEAR MOTION: RECTANGULAR COMPONENTS (Sections ) Today’s Objectives: Students will be able to: a)Describe the motion of a particle traveling.
Motion Along a Straight Line Chapter 3. Position, Displacement, and Average Velocity Kinematics is the classification and comparison of motions For this.
Advanced Physics Chapter 2 Describing Motion: Kinematics in One Dimension.
Physics Chapter 2 Notes. Chapter Mechanics  Study of the motion of objects Kinematics  Description of how objects move Dynamics  Force and why.
Dynamics, Fourteenth Edition R.C. Hibbeler Copyright ©2016 by Pearson Education, Inc. All rights reserved. Today’s Objectives: Students will be able to:
Describing Motion: Kinematics in One Dimension Chapter 2.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion (Dynamics.
Kinematics.
INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION
Engineering Dynamics Module code NS 111 Engr. Dr Imran Shafi
Introduction & Rectilinear Kinematics:
GENERAL & RECTANGULAR COMPONENTS
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
Chapter 2 Straight Line Motion
– KINEMATIC OF RECTILINEAR MOTION
Chapter 2 Motion Along a Straight Line
NORMAL AND TANGENTIAL COMPONENTS
RECTILINEAR KINEMATICS: ERRATIC MOTION
GENERAL & RECTANGULAR COMPONENTS
Motion Along a Straight Line
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
NORMAL AND TANGENTIAL COMPONENTS
RELATIVE MOTION ANALYSIS: ACCELERATION
Motion along a straight line
MEE 214 (Dynamics) Tuesday
Describing Motion: Kinematics in One Dimension
RIGID BODY MOTION: TRANSLATION & ROTATION (Sections )
Kinematics of Particles
RECTILINEAR KINEMATICS: CONTINUOUS MOTION
PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION
Physics 111: Mechanics Lecture 2
GENERAL & RECTANGULAR COMPONENTS
Chapter 12 : Kinematics Of A Particle
Presentation transcript:

RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION Today’s Objectives:R206 Students will be able to: Find the kinematic quantities (position, displacement, velocity, and acceleration) of a particle traveling along a straight path. In-Class Activities: • Check Homework • Reading Quiz • Applications • Relations between s(t), v(t), and a(t) for general rectilinear motion • Relations between s(t), v(t), and a(t) when acceleration is constant • Concept Quiz • Group Problem Solving • Attention Quiz

READING QUIZ 1. In dynamics, a particle is assumed to have _________. A) both translation and rotational motions B) only a mass C) a mass but the size and shape cannot be neglected D) no mass or size or shape, it is just a point 1. B 2. C 2. The average speed is defined as __________. A) r/ t B) s/ t C) sT/ t D) None of the above.

APPLICATIONS The motion of large objects, such as rockets, airplanes, or cars, can often be analyzed as if they were particles. Why? If we measure the altitude of this rocket as a function of time, how can we determine its velocity and acceleration?

APPLICATIONS (continued) A sports car travels along a straight road. Can we treat the car as a particle? If the car accelerates at a constant rate, how can we determine its position and velocity at some instant?

An Overview of Mechanics Mechanics: The study of how bodies react to forces acting on them. Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics – concerned with the geometric aspects of motion 2. Kinetics – concerned with the forces causing the motion

RECTILINEAR KINEMATICS: CONTINIOUS MOTION (Section 12.2) A particle travels along a straight-line path defined by the coordinate axis s. The position of the particle at any instant, relative to the origin, O, is defined by the position vector r, or the scalar s. Scalar s can be positive or negative. Typical units for r and s are meters (m) or feet (ft). The displacement of the particle is defined as its change in position. Vector form:  r = r’ - r Scalar form:  s = s’ - s The total distance traveled by the particle, sT, is a positive scalar that represents the total length of the path over which the particle travels.

The instantaneous velocity is the time-derivative Velocity is a measure of the rate of change in the position of a particle. It is a vector quantity (it has both magnitude and direction). The magnitude of the velocity is called speed, with units of m/s or ft/s. The average velocity of a particle during a time interval t is vavg = r / t The instantaneous velocity is the time-derivative of position. v = dr / dt Speed is the magnitude of velocity: v = ds / dt Average speed is the total distance traveled divided by elapsed time: (vsp)avg = sT / t

ACCELERATION Acceleration is the rate of change in the velocity of a particle. It is a vector quantity. Typical units are m/s2. The instantaneous acceleration is the time derivative of velocity. Vector form: a = dv / dt Scalar form: a = dv / dt = d2s / dt2 Acceleration can be positive (speed increasing) or negative (speed decreasing). As the text indicates, the derivative equations for velocity and acceleration can be manipulated to get a ds = v dv

SUMMARY OF KINEMATIC RELATIONS: RECTILINEAR MOTION • Differentiate position to get velocity and acceleration. v = ds/dt ; a = dv/dt or a = v dv/ds • Integrate acceleration for velocity and position. Velocity: ò = t o v dt a dv s ds or ò = t o s dt v ds Position: • Note that so and vo represent the initial position and velocity of the particle at t = 0.

CONSTANT ACCELERATION The three kinematic equations can be integrated for the special case when acceleration is constant (a = ac) to obtain very useful equations. A common example of constant acceleration is gravity; i.e., a body freely falling toward earth. In this case, ac = g = 9.81 m/s2 downward. These equations are: t a v c o + = yields ò dt dv 2 c o s t (1/2) a v + = yields ò dt ds ) s - (s 2a (v v o c 2 + = yields ò ds a dv

EXAMPLE Given: A particle travels along a straight line to the right with a velocity of v = ( 4 t – 3 t2 ) m/s where t is in seconds. Also, s = 0 when t = 0. Find: The position and acceleration of the particle when t = 4 s. Plan: Establish the positive coordinate, s, in the direction the particle is traveling. Since the velocity is given as a function of time, take a derivative of it to calculate the acceleration. Conversely, integrate the velocity function to calculate the position.

ò EXAMPLE (continued) = Solution: 1) Take a derivative of the velocity to determine the acceleration. a = dv / dt = d(4 t – 3 t2) / dt = 4 – 6 t  a = – 20 m/s2 (or in the  direction) when t = 4 s 2) Calculate the distance traveled in 4s by integrating the velocity using so = 0: v = ds / dt  ds = v dt   s – so = 2 t2 – t3  s – 0 = 2(4)2 – (4)3  s = – 32 m ( or ) ò = t o s (4 t – 3 t2) dt ds

CONCEPT QUIZ t = 2 s t = 7 s 3 m/s 5 m/s 1. A particle moves along a horizontal path with its velocity varying with time as shown. The average acceleration of the particle is _________. A) 0.4 m/s2 B) 0.4 m/s2 C) 1.6 m/s2 D) 1.6 m/s2 Answers: 1. D 2. D 2. A particle has an initial velocity of 30 m/s to the left. If it then passes through the same location 5 seconds later with a velocity of 50 m/s to the right, the average velocity of the particle during the 5 s time interval is _______. A) 10 m/s B) 40 m/s C) 16 m/s D) 0 m/s

GROUP PROBLEM SOLVING Given: A particle is moving along a straight line such that its velocity is defined as v = (-4s2) m/s, where s is in meters. Find: The velocity and acceleration as functions of time if s = 2 m when t = 0. Plan: Since the velocity is given as a function of distance, use the equation v=ds/dt. 1) Express the distance in terms of time. 2) Take a derivative of it to calculate the velocity and acceleration.

GROUP PROBLEM SOLVING (continued) Solution: 1) Since v = ( 4s2)    Determine the distance by integrating using s0 = 2. Notice that s = 2 m when t = 0.

GROUP PROBLEM SOLVING (continued) 2) Take a derivative of distance to calculate the velocity and acceleration. m/s 

ATTENTION QUIZ 1. A particle has an initial velocity of 3 m/s to the left at s0 = 0 ft. Determine its position when t = 3 s if the acceleration is 2 m/s2 to the right. A) 0.0 m B) 6.0 m C) 18.0 m D) 9.0 m Answers: 1. A 2. B 2. A particle is moving with an initial velocity of v = 12 m/s and constant acceleration of 3.78 m/s2 in the same direction as the velocity. Determine the distance the particle has traveled when the velocity reaches 30 m/s. A) 50 m B) 100 m C) 150 m D) 200 m

End of the Lecture Let Learning Continue