A Multimodel Drought Nowcast and Forecast Approach for the Continental U.S.  Dennis P. Lettenmaier Department of Civil and Environmental Engineering University.

Slides:



Advertisements
Similar presentations
Multi-sensor and multi-scale data assimilation of remotely sensed snow observations Konstantinos Andreadis 1, Dennis Lettenmaier 1, and Dennis McLaughlin.
Advertisements

Drought Monitoring and Prediction Systems at the University of Washington and Princeton University Climate Diagnostics and Prediction Workshop Lincoln,
A Macroscale Glacier Model to Evaluate Climate Change Impacts in the Columbia River Basin Joseph Hamman, Bart Nijssen, Dennis P. Lettenmaier, Bibi Naz,
Current Website: An Experimental Surface Water Monitoring System for Continental US Andy W. Wood, Ali.
CPC’s U.S. Seasonal Drought Outlook & Future Plans April 20, 2010 Brad Pugh, CPC.
Experimental seasonal hydrologic forecasting for the Western U.S. Dennis P. Lettenmaier Andrew W. Wood, Alan F. Hamlet Climate Impacts Group University.
Current WEBSITE: An Experimental Daily US Surface Water Monitor Andy W. Wood, Ali S. Akanda, and Dennis.
Global Flood and Drought Prediction GEWEX 2005 Meeting, June Role of Modeling in Predictability and Prediction Studies Nathalie Voisin, Dennis P.
Introduction 1. Climate – Variations in temperature and precipitation are now predictable with a reasonable accuracy with lead times of up to a year (
Understanding hydrologic changes: application of the VIC model Vimal Mishra Assistant Professor Indian Institute of Technology (IIT), Gandhinagar
Efficient Methods for Producing Temporally and Topographically Corrected Daily Climatological Data Sets for the Continental US JISAO/SMA Climate Impacts.
A Multi-Model Hydrologic Ensemble for Seasonal Streamflow Forecasting in the Western U.S. Theodore J. Bohn, Andrew W. Wood, Ali Akanda, and Dennis P. Lettenmaier.
Drought Prediction (In progress) Besides real-time drought monitoring, it is essential to provide an utlook of what future might look like given the current.
Potential for medium range global flood prediction Nathalie Voisin 1, Andrew W. Wood 1, Dennis P. Lettenmaier 1 1 Department of Civil and Environmental.
The lower boundary condition of the atmosphere, such as SST, soil moisture and snow cover often have a longer memory than weather itself. Land surface.
Opportunities for UCLA/JPL water-related collaborations: Western U.S. focus Dennis P. Lettenmaier Department of Geography University of California, Los.
A 85-year Retrospective Hydrologic Analysis for the Western US Nathalie Voisin, Hyo-Seok Park, Alan F. Hamlet, Andrew W. Wood, Ned Guttman # and Dennis.
Assessing the Influence of Decadal Climate Variability and Climate Change on Snowpacks in the Pacific Northwest JISAO/SMA Climate Impacts Group and the.
North American Drought in the 21st Century Project Overview Dennis P. Lettenmaier University of Washington Eric F. Wood Princeton University Gordon Bonan.
Implementing Probabilistic Climate Outlooks within a Seasonal Hydrologic Forecast System Andy Wood and Dennis P. Lettenmaier Department of Civil and Environmental.
Drought and Model Consensus: Reconstructing and Monitoring Drought in the US with Multiple Models Theodore J. Bohn 1, Aihui Wang 2, and Dennis P. Lettenmaier.
VERIFICATION OF A DOWNSCALING SEQUENCE APPLIED TO MEDIUM RANGE METEOROLOGICAL PREDICTIONS FOR GLOBAL FLOOD PREDICTION Nathalie Voisin, Andy W. Wood and.
EVALUATION OF A GLOBAL PREDICTION SYSTEM: THE MISSISSIPPI RIVER BASIN AS A TEST CASE Nathalie Voisin, Andy W. Wood and Dennis P. Lettenmaier Civil and.
1 Yun Fan, Huug van den Dool, Dag Lohmann, Ken Mitchell CPC/EMC/NCEP/NWS/NOAA Kunming, May, 2004.
From catchment to continental scale: Issues in dealing with hydrological modeling across spatial and temporal scales Dennis P. Lettenmaier Department of.
Application of NLDAS Ensemble LSM Simulations to Continental-Scale Drought Monitoring Brian Cosgrove and Charles Alonge SAIC / NASA GSFC Collaborators:
Current WEBSITE: Experimental Surface Water Monitor for the Continental US Ali S. Akanda, Andy W. Wood,
Evaluation of TRMM satellite precipitation product in hydrologic simulations of La Plata Basin Fengge Su 1, Yang Hong 2, and Dennis P. Lettenmaier 1 1.
LSM Hind Cast for the Terrestrial Arctic Drainage System Theodore J. Bohn 1, Dennis P. Lettenmaier 1, Mark C. Serreze 2, and Andrew G. Slater 2 1 Department.
Nathalie Voisin1 , Andrew W. Wood1 , Dennis P. Lettenmaier1 and Eric F
Towards development of a Regional Arctic Climate System Model ---
Mahkameh Zarekarizi, Hamid Moradkhani,
Upper Rio Grande R Basin
Brian Cosgrove and Charles Alonge SAIC / NASA GSFC
Andrew Wood, Ali Akanda, Dennis Lettenmaier
Hydrologic forecasting for the NAMS region – extension of the University of Washington westwide forecast system Dennis P. Lettenmaier Chunmei Zhu Andrew.
Kostas Andreadis, Dennis Lettenmaier
Model-Based Estimation of River Flows
Streamflow Simulations of the Terrestrial Arctic Regime
Performance of the VIC land surface model in coupled simulations
Professor Steve Burges retirement symposium , March , 2010, University of Washington Drought assessment and monitoring using hydrological modeling.
Dennis P. Lettenmaier, Andrew W. Wood, Ted Bohn, George Thomas
Nathalie Voisin, Andy W. Wood and Dennis P. Lettenmaier
A West-wide Seasonal to Interannual Hydrologic Forecast System
Francisco Munoz Dennis P. Lettenmaier
Hydrologic ensemble prediction - applications to streamflow and drought Dennis P. Lettenmaier Department of Civil and Environmental Engineering And University.
Multimodel Ensemble Reconstruction of Drought over the Continental U.S
Kostas M. Andreadis1, Dennis P. Lettenmaier1
Hydrologic Forecasting
Hydrology and Water Management Applications of GCIP Research
Andy Wood and Dennis Lettenmaier
Progress in drought monitoring and prediction
Shraddhanand Shukla Andrew W. Wood
Surface Water Virtual Mission
Land surface modeling for real-time hydrologic prediction and drought forecasting Dennis P. Lettenmaier Department of Civil and Environmental Engineering.
Advances in seasonal hydrologic prediction
Model-Based Estimation of River Flows
Andy Wood and Dennis P. Lettenmaier
Towards a global drought prediction capability
Runoff Simulations in Region12 (or almost the State of Texas)
Results for Basin Averages of Hydrologic Variables
Andrew W. Wood Dennis P. Lettenmaier
Evaluation of the TRMM Multi-satellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in La Plata Basin Dennis P. Lettenmaier and.
HYDROLOGIC APPLICATIONS AT THE UNIVERSITY OF WASHINGTON
Dennis P. Lettenmaier Andrew W. Wood, and Kostas Andreadis
UW Hydrologic Forecasting: Yakima R. Discussion
Multimodel Ensemble Reconstruction of Drought over the Continental U.S
Drought Monitoring and Prediction Systems at the University of Washington and Princeton University Dennis P. Lettenmaier Department of Civil and Environmental.
An Experimental Daily US Surface Water Monitor
Results for Basin Averages of Hydrologic Variables
Presentation transcript:

A Multimodel Drought Nowcast and Forecast Approach for the Continental U.S.  Dennis P. Lettenmaier Department of Civil and Environmental Engineering University of Washington CEOP/GEWEX Extremes Workshop Vancouver, B.C. May 21, 2008

Outline Motivation Models Methodology Results Summary

Motivation Widely used, but link to direct observations (e.g., of soil moisture) is weak – hence reliance on indirect methods, such as PDSI. Need for reproducible basis for identifying drought-affected regions. Land surface model representations of soil moisture (and runoff) offer an alternative means for estimating severity, frequency, duration, and variability of current droughts, and linking them to the climatology of observed droughts.

Models VIC: Variable Infiltration Capacity Model (Liang et al. 1994) CLM3.5: Community Land Model version 3.5 (Oleson et al. 2007) NOAH LSM: NCEP, OSU, Air Force, Hydrol. research lab (Mitchell et al. 1994, Chen and Mitchell 1996) Catchment LSM: NASA Seasonal-to-Interannual Prediction Project (NSIPP) LSM (Koster et al. 2000; Ducharne et al. 2000)

Model Schematic

Data Daily precipitation and temperature max-min, other land surface variables (downward solar and longwave radiation, near-surface humidity, and wind) derived via index methods. Methods as described in Maurer et al. (2002). Data duration is from 1915-2003, and period of analysis is 1920-2003 . Spatial resolution 0.5  (3322 land grid cells), domain conterminous United States. Soil and vegetation parameters are from different sources for different models (generally NLDAS), as provided by model developers. Other parameters are model standard setup.

The challenge: Different land schemes have different soil moisture dynamics Model simulated soil moisture at cell (40.25N, 112.25W)

Solution: Normalized total column soil moisture For each model, total column soil moisture was expressed as percentiles (hence by construct, uniformly distributed from zero to one). Percentiles were estimated for each model by month, using simulated total column soil moisture for the period 1920-2003. Percentiles were computed using the Weibull plotting position formula.

Ensemble methods Two ensemble methods were used: Ensemble-1: averaged 4 modeled soil moisture percentiles of each grid cell on monthly scale. Ensemble –2: first, normalized column total soil moisture modeled by 4 models individually; second, averaged those normalized soil moisture of each grid cell in 4 models; third, calculated percentiles of those averaged values .

Areas for spatially averaged soil moisture percentiles NW NE SW SE Box sizes are 5 x 5 degrees

NW

NE

SW

SE

Severity-area-duration for the 1930s drought(s)

Averaged soil moisture percentiles 1932-38

Averaged soil moisture percentiles 1950-57

Spatial distribution of average (monthly) between-model correlations (of soil moisture percentiles)

e-folding time of soil moisture autocorrelation (months)

Soil water holding capacity of six models (cm)

Multimodel results from UW real-time surface water monitor, 11/07 – 1/08

UW SWM for 5/21/08 (updated 5/20/08)

Conclusions Current drought products suffer from the absence of reproducible, objective methods for identifying drought extent and severity. Although widely used, PDSI has well-known shortcomings, especially the absence of a strong link to physical processes Land surface parameterizations, such as the family of NLDAS models, avoid these shortcomings. However, soil moisture, a key drought-related variable, is model-dependent Multi-model estimates of soil moisture, appropriately normalized, address all of the above shortcomings. When forced with common observations, major drought events appear to be plausibly reproduced by the individual models, and two methods of combining results into a multi-model ensemble.