2E4: SOLIDS & STRUCTURES Lecture 9

Slides:



Advertisements
Similar presentations
Mechanical Properties of Metals
Advertisements

Stress, strain and more on peak broadening
3.5 STRAIN ENERGY When material is deformed by external loading, energy is stored internally throughout its volume Internal energy is also referred to.
Elasticity by Ibrhim AlMohimeed
Solid Materials.
Chapter 11 Mechanical Properties of Materials
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
LECTURER 2 Engineering and True Stress-Strain Diagrams
Normal Strain and Stress
Chapter 3 Mechanical Properties of Materials
MECHANICAL PROPERTIES OF MATERIALS
The various engineering and true stress-strain properties obtainable from a tension test are summarized by the categorized listing of Table 1.1. Note that.
EXPERIMENT # 3 Instructor: M.Yaqub
CTC / MTC 222 Strength of Materials
Lecture 26: Mechanical Properties I: Metals & Ceramics
Mechanics of Materials II
ENGR 225 Section
MECHANICAL PROPERTIES OF SOLIDS
Mechanical Properties of Metals
Mechanics of Materials Goal:Load Deformation Factors that affect deformation of a structure P PPP Stress: intensity of internal force.
Elastic Stress-Strain Relationships
CHAPTER OBJECTIVES Show relationship of stress and strain using experimental methods to determine stress-strain diagram of a specific material Discuss.
Elasticity and Strength of Materials
Mechanical Properties
Hooke’s Law and Modulus of Elasticity ( )
FYI: All three types of stress are measured in newtons / meter2 but all have different effects on solids. Materials Solids are often placed under stress.
Mechanical Properties
Class #1.2 Civil Engineering Materials – CIVE 2110
Chapter 2 Stress and Strain -- Axial Loading
STRENGTH OF MATERIALS John Parkinson ©.
Strengths Chapter 10 Strains. 1-1 Intro Structural materials deform under the action of forces Three kinds of deformation Increase in length called an.
Unit V Lecturer11 LECTURE-I  Introduction  Some important definitions  Stress-strain relation for different engineering materials.
CHE 333 Class 14 True Stress True Strain Crystalline Processes During Deformation.
STRUCTURES Outcome 3 Gary Plimer 2008 MUSSELBURGH GRAMMAR SCHOOL.
Mechanical Properties of Materials
1 ME383 Modern Manufacturing Practices Lecture Note #3 Stress-Strain & Yield Criteria Dr. Y.B. Guo Mechanical Engineering The University of Alabama.
1 Class #2.1 Civil Engineering Materials – CIVE 2110 Strength of Materials Mechanical Properties of Ductile Materials Fall 2010 Dr. Gupta Dr. Pickett.
Mechanical Properties of Materials
1.To understand the keywords associated with the deformation of different types of solids 2.To be able to calculate stress, strain and hence Young’s modulus.
1.To understand the keywords associated with the deformation of different types of solids 2.To be able to calculate stress, strain and hence Young’s modulus.
Unit 1 Key Facts- Materials Hooke’s Law Force extension graph Elastic energy Young’s Modulus Properties of materials.
 2005 Pearson Education South Asia Pte Ltd 3. Mechanical Properties of Materials 1 CHAPTER OBJECTIVES Show relationship of stress and strain using experimental.
DR KAFEEL AHMED Mechanical Behaviour Stress Strain Behaviour of Mild Steel.
STRUCTURES Young’s Modulus. Tests There are 4 tests that you can do to a material There are 4 tests that you can do to a material 1 tensile This is where.
SIMPLE STRESS & STRAIN ► EN NO GUIDED BY EN NO PROF. V.R.SHARMA GEC PALANPUR APPLIED MECHANICS DEPARTMENT.
PROPERTIES OF MATERIALS ENF 150 Chapter 10: Properties of Materials.
Mechanics of Solids (M2H321546)
The various engineering and true stress-strain properties obtainable from a tension test are summarized by the categorized listing of Table 1.1. Note that.
Lab. 1: Tension Test of Metals
CHAPTER OBJECTIVES Show relationship of stress and strain using experimental methods to determine stress-strain diagram of a specific material Discuss.
Mechanics of Materials
Chapter 3 – Mechanical Properties of Material
Introduction We select materials for many components and applications by matching the properties of the material to the service condition required of the.
MECHANICAL PROPERTIES OF MATERIALS
Chapter 3 Mechanical Properties of Materials
Poisons Ratio Poisons ratio = . w0 w Usually poisons ratio ranges from
Experiment #1 Tension Test
Physical Properties of Rocks
LECTURE-I Introduction Some important definitions
Mechanical Properties: 1
LECTURER 9 Engineering and True Stress-Strain Diagrams
Elastic & Plastic behavior of Materials
Mechanical properties of metals Stress and Strain in metals
PDT 153 Materials Structure And Properties
Simple Stresses & Strain
LECTURER 2 Engineering and True Stress-Strain Diagrams
Describing deformation
CHAPTER OBJECTIVES Show relationship of stress and strain using experimental methods to determine stress-strain diagram of a specific material Discuss.
Mechanical Properties Of Metals - I
Mechanical Property 기계적 성질
Presentation transcript:

2E4: SOLIDS & STRUCTURES Lecture 9 Dr. Bidisha Ghosh Notes: http://www.tcd.ie/civileng/Staff/Bidisha.Ghosh/So lids & Structures

Hooke’s Law A material which regains its shape when the external load is removed is considered as ‘perfectly elastic’. From tensile tests, it can be seen within the range of elastic behaviour of a material the elongation is proportional to both the external load and the length of the bar. For linearly elastic materials, this Stress is proportional to strain. The factor of proportionality between stress and strain is called, ‘Modulus of Elasticity’ or Young’s modulus. E has the dimension of stress

We already know Hooke’s law, but what does it tell us? It tells us that how a material is going to behave and change size (length/width/height). How do we know E? E is always found out from experiments. So, we have to stretch or compress things to know that what is the value of E for any material. The relationship between stress and strain is defined by E. And, actually it is the relation between load and deformation. So, for a material of known length and area a graph of load (P) vs. deflection (𝛿) will give us E.

Tensile Test http://www.youtube.com/watch?v=hD_NJaZIpT0&feature=related

Tensile Test Check this link for tensile test movie: http://web.mst.edu/~mecmovie/

Extensometer http://www.youtube.com/watch?v=A-nN7tnXLIM

Tensile Test Linear elastic region. Slope of this linear part is the young’s modulus. The proportional limit is the stress when stress-strain relationship is starts to become nonlinear. (Beyond this limit the material is not elastic) Yielding (strain hardening) Ultimate strength necking Fracture Stress Unload-reloading creates strain hardening/work hardening Permanent deformation

Stress-Strain Diagram The Load-deformation plot does not provide material properties. But, when converted to stress-strain plot it provides all the information needed. Notice elastic limit and proportionality limits are different! Some materials are still elastic beyond the linear (proportional) section of the curve. But in all practical cases they are same. Notice ultimate stress is higher than fracture stress. This is because this graph do not plot the true stress accounting for the reduction in area due to necking. This is called engineering stress. The true stress actually is higher at fracture.

Glossary Proportionality Limit: The point till which the stress-strain curve is linear. Elastic Limit: The point beyond which the material will no longer go back to its original shape when the load is removed. Yield Point: It is the point at which the material will have an appreciable elongation or yielding without any increase in load. Ultimate Strength: The maximum ordinate in the stress-strain diagram is the ultimate strength or tensile strength. Fracture Strength: It is the strength of the material at rupture. This is also known as the breaking strength. Residual Strain: In the plastic region, after unloading the material does not go back to its original shape and the remaining strain in the material is called residual strain and the elongation is called permanent set. Work Hardening: Also known as strain hardening, after yielding occurs the material can withstand increase amount of stress, showing increase in strength. True stress-strain & engineering stress-strain: The engineering strain is calculated using the initial cross-sectional area of the specimen. Creep: A solid material deforms permanently under the influence of continuous loading below yield stress.

Stress-Strain Diagram Ductile materials are those which can yield and undergo significant deformation in normal temperature. Brittle materials rupture with little deformation.

Concrete Concrete is very weak in tension (10% of its compressive strength) and very strong in compression. Concrete behaves like a brittle material when assumed homogenous. compression testing of concrete

Properties of Typical Materials Young's Modulus (Modulus of Elasticity) (GPa) Ultimate Strength (MPa) Yield Strength (Mpa) Aluminum 69 110 95 Bone (compression) 9 170 Concrete (high strength)(compression) 30 40 Diamond (C) 1220 Wood (compression) 9-13 40-50 Glass 50 - 90 50 Steel 200 400 250

Hooke’s Law: Shear Modulus shear modulus or modulus of rigidity, G Elasticity can be measured for shear loading. Generally a direct shear tests or torsion test can be used. Using Hooke’s law for the linear elastic part of the stress-strain diagram, Direct shear test on soil! http://www.youtube.com/watch?v=L1fWPypBP0g

Poisson’s Ratio In elastic range, the ratio of lateral strain to elastic strain is constant. The lateral strain caused due to Poisson's ratio do not result/create any stress in lateral direction. dy dz dx

Values of n The concept is only valid for uniaxial strain and isotropic material. In case of perfectly incompressible material, n is 0.5. For all practical cases, 0< n<0.5 Generally, between 0.25-0.35 For steel, assumed to be 0.3 For concrete, assumed to be 0.1 For incompressible material, 0.5 (may be, water) Relation between elastic moduli:

Strain Energy The external work done on an elastic body in causing it to distort/deform from its original state is stored in the body as strain energy. For perfectly elastic body no dissipation of energy occurs and this energy is recoverable on unloading. Strain energy is the area under the linear part of stress strain curve

Strain Analysis What happens when we apply 1-D stress? What happens when we apply 2-D stress?

Strain Analysis What happens when we apply 3-D stress? ‘stress and strain are not proportional any more!!’

How much does the volume change? 3-D case Let’s assume initial volume, abc Final volume = Change in volume Hence, strain or volumetric strain, c a b