Building and testing prototypes

Slides:



Advertisements
Similar presentations
3D Printing Change this title.
Advertisements

Zacharie Lavigne COMP-1631 February 1, 2011
1. What is Rapid Prototyping
C4 – Rapid Prototype Manufacture
Design Realization lecture 9 John Canny 9/23/03. Last Time  More on kinematics and IK.  Some concepts from dynamics.
EML 2023 – Rapid Prototyping Lecture 1 – Additive Rapid Prototyping.
ME 330 Manufacturing Processes RAPID PROTOTYPING
TAREK A. TUTUNJI Rapid Prototyping. Prototype A prototype can be defined as a model that represents a product or system. This model is usually used for.
Rapid Prototyping Operations
Rapid Prototyping Technologies Wei-Ren Ng Department of Electrical and Computer Engineering, University of Arizona.
1 Rapid Prototyping Laminated Object Manufacturing Selective Laser Sintering Stereolithography Fused Deposition Modeling Solid Ground Curing 3D Printing.
RAPID PROTOTYPING Fundamentals of Rapid Prototyping
ASSIGNMENT ON DYEING AND PRINTING (3D PRINTING) SUBMITTED BY NITIN UKE MFTECH.
What is 3D Printing ? 3D Printing refers to a relatively new class of manufacturing methods which quickly produce physical prototypes from 3D CAD data.
Rapid prototyping is a computer program that constructs three-dimensional models of work derived from a Computer Aided Design (CAD) drawing. With the use.
Machining is processes in which we get a desired final shape and size from of raw material. 1.Conventional / Traditional Machining 2.Non Conventional.
Teaching materials to accompany:
3D Printing by Vladimirs Pankratovs. 3D 2D D -D... 3D computer graphics are graphics which are using three dimensional representation of geometric data.
Additive Manufacturing Seminar
AutoMould Rapid Prototype.. Rapid Prototype. Rapid prototyping is the most common name given to a host of related technologies that are used to fabricate.
Rapid Prototyping Dr. Lotfi K. Gaafar The American University in Cairo
Machine Tools And Devices For Special Technologies Rapid Prototyping Slovak University of Technology Faculty of Material Science and Technology in Trnava.
Shad Valley MUN Introduction to Product Design and Development
East Midlands Digital D&T Support Centre Part of the CAD in Schools Initiative Rapid Prototyping 11 th March 2009 Integrated Electronics Course.
3D Desktop Printing (printer) By G.Seshu Kumar (10A25A0503)
RAPID PROTOTYPING REVISION. Rapid prototyping is the automatic construction of physical objects using solid freeform fabrication. The first techniques.
Prototyping Integrated Product and Process Design ME 475 |
What in the SAMCRO Is 3D Printing?.
Selective Laser Sintering
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint to accompany Krar Gill Smid Technology of Machine.
© Pearson & GNU Su-Jin Kim Plastics Manufacturing Processes Rapid prototyping 3d CAD  Real part.
1 POLY JET PROCESS - An effective RP Technique for Sheet Metal Works.
Laminated Object Manufacturing (LOM)
Chapter 12 EIN 6392, Product Design summer 2012
Rapid Prototyping Operations
Rapid Prototyping. Team Members 08MCD002D V SYAMALA GAYATRI 08MCD003HARIPRANEETH E 08MCD004HARSHA K 08MCD005 JAGADISHKUMAR R 08MCD008JEEVA P A 08MCD009KALLURI.
Rapid Prototyping. Rapid prototyping is the automatic construction of physical objects using additive manufacturing technology. used to produce.
Product Design Rapid Prototyping. Rapid Prototyping is the Rapid Prototyping process of producing a 3D model very quickly and accurately from a 3D CAD.
Rapid Prototyping Details ENGR Objectives  Examples of different methods of Rapid Prototyping  How a 3D printer works  3D Printing in EED  Tools.
Creating a Prototype © 2013 Project Lead The Way, Inc.Computer Integrated Manufacturing.
3D Printing Technology Sharon S.B S6 CT. 3D Printing Technology Sharon S.B S6 CT.
CAD/CAM You have created the net of your packaging in 2D Design, you have used CAD Computer Aided Design Compared to doing the work by hand you were able.
A SEMINAR ON 1. CONTENTS Prototyping Rapid prototyping process Stereo lithography  Machine  Process  Material used Benefits Application Problems with.
CAD CAM. 2 and 3 Dimensional CAD: Using 2-dimensional CAD software, designers can create accurate, scaled drawings of parts and assemblies for designs.
Modelling and Prototyping Aims: To be able to DESCRIBE the process of SKETCH MODELLING and BLOCK MODELLING. To be able to EXPLAIN the reasons for using.
KS4 Graphic Products.  Describe the process of block modelling of MDF & Styrofoam and rapid prototyping using stereolithography (SLA) and 3D printing.
3D Printing.  What is 3D printing?  General Principles  3D printing Methods  Applications  Challenges  Conclusion  Reference.
Dr. Lotfi K. Gaafar 2002 Rapid Prototyping BY G.BHARATH REDDY.
Rapid Prototyping.. Rapid Prototyping (RP) techniques are methods that allow designers to produce physical prototypes quickly. It consists of various.
3D Scanning Services ..
Primary and Secondary Processes
RAPID PROTOTYPING REVISION.
Manufacturing Engineering and Technology
Rapid Prototyping Details
Laminated Object Manufacturing (LOM)
Rapid Prototyping (RP)
RAPID PROTOTYPING.
Rapid Tooling.
What is AM? What is AM?.
3D Printing ..
EML 2023 Rapid Prototyping.
KAVITHA MOHAN S3ECE ROLL NO:41
Primary and Secondary Processes
CAD CAM.
Computer Numerical Control
Rapid prototyping Higher product design.
Additive Manufacturing: Types, Materials, and Processes
Manufacturing Processes
Presentation transcript:

Building and testing prototypes Why test? Form, fit & function Types of tests Types of prototypes Test plans Summary

Why Do Product Testing? Finished parts do not always look the same as designed Finished parts do not always fit together as designed Finished parts do not always work the way they were designed.

What do “form” tests determine? Form test– Will the part/product have an acceptable appearance?

What do “fit” tests determine? Fit test – Will the parts fit together or fit the user, with an acceptable precision?

What do “function” tests determine? Function – Will the part/product perform as required?

Tests: Types & Timing -A Formulation Concept Design “Proof of Concept” tests validate physical principles “Product Concept” tests validate product / appearance

Product concept and Proof-of-concept models Mercedes F700

Tests: Types & Timing - B Parametric Design Configuration Design “Virtual prototype” tests solid modeling CAD “Alpha prototype” tests actual geometry & materials but may not use actual mfg. processes

Virtual prototype Mercedes F700 MIT Smart City 2020

Alpha prototype The flying saucer Sky Commuter is on the block on ebay. Starting bid: $55,600. Labels: Future Past, Technology The flying saucer

Tests: Types & Timing - C Detail Design Manufacture “Beta prototype” tests parts made with planned mfg. processes volunteer customers / panel actual operating conditions, environment “Preproduction prototype” tests parts made with final mat’s & processes independent labs: UL, CPSC, NHTSA http://www.youtube.com/watch?v=U9CfHGnsPqs

need physical “prototype” Testing Sequence Product concept Proof of concept Virtual prototype Alpha prototype Beta prototype PreProduction prototype less expensive more expensive need physical “prototype”

More prototypes Toyota Winglet Toyota i-Real Toyota i-Foot Toyota PM

Physical Prototypes Prototype… is a replica or model of the part showing principal geometric features Prototypes differ in: Scale - Reduced, Full, Expanded Fabrication Process - Same as mfg, Similar, Different Material - Same as final, Different, Similar Two ways to make prototypes: Traditional Rapid

Traditional prototypes Clay models of new auto body for appearance testing, Wood models of heavy equipment patterns for metal castings, Manually machined metal airplane wings for function testing in a wind tunnel, Reduced-scale balsa wood models of large facilities, to examine equipment layout. Clay modeling: 1, 2, 3, 4, 5

Some Disadvantages of Traditional Prototyping Uses tools and fabrication methods that are labor intensive. Often require significant mechanical or artistic skills. Take a long time to fabricate an original. Revisions may require complete rebuilding of part Costly for duplicates. May not facilitate tooling design and construction

Rapid Prototyping NC/CNC Machining Selective Laser Apparatus Fused Deposition Modeling 3-D Ink Jet Laminated Object Manufacturing Selective Laser sintering Service Bureaus

NC/CNC Prototyping (Subtractive process) workstation Solid Modeling CAD software Saved Part Solid model file *.PRT NC code generation NC Machine instruction code file NC/CNC Machine e.g. mill, lathe Fabricated Prototype

Numerical Control Machining (NC/CNC) CAD files are converted to NC – machine instruction codes for automatic machining Part can be made of metal Dimensions have excellent tolerances Multiple copies of parts can be made easily Prototyped parts are well suited for form, fit and function tests CNC

NC Machined part example Mars rover wheels (Courtesy of HAAS Automation)

Rapid Prototyping – Additive processes Solid Modeling CAD software Rapid Prototyper Slicing Program Faceted Model file *.STL Saved Part Solid model file *.PRT Fabricated Prototype RP Machine instruction code file RP Machine workstation

Stereo Lithographic Apparatus (SLA) laser projection mirror (xy-axes) elevator (z-axis) Photopolymer (liquid resin) object being prototyped tank Solidified lamina SLA

(Courtesy of 3D Systems) 3-D Systems SLA 7000 (Courtesy of 3D Systems)

SLA Jaguar manifold (courtesy 3-D Systems, Inc)

Stereo Lithography Apparatus (SLA) Parts exhibit superior finishes polymeric prototypes are weaker than metal prototypes (i.e.CNC) Prototyped parts are well suited for form, and fit tests. Some function testing

Selective Laser Sintering (SLS) Uses a high power laser to sinter together fusible materials, such as powdered metals, layer by layer. Sintering is the heating and fusing of small particles resulting in a hard bonded material block. The un-sintered powder supports the part as the layers are sintered. SLS

Fused-deposition modeling (FDM) process Filament Spool Heater Drive Wheels Table Fused Part Head motion Table motion Head Molten filament FDM, PDF

(Courtesy of Stratasys Corporation) FDM – Stratasys 3000 (Courtesy of Stratasys Corporation)

Cowling (courtesy of Stratasys)

Trike (courtesy of Stratasys)

Fused Deposition Modeling (FDM) Parts can be made from high strength ABS plastic, impact resistant ABS, investment casting wax, and an elastomer. Prototype parts are well suited for form and fit testing. Some function testing

3-D Inkjet prototyping Glue-like binder selectively “printed” onto a layer of dry powder, layer by layer, which dries into a solid prototype. Similar process uses a print head to deposit a thermoplastic material, layer by layer. Quick and inexpensive The processes work well as concept modelers. Prototypes have limited dimensional tolerances Somewhat fragile unless coated with a hardener Prototypes made with this process are typically not function tested. 3DP

Z-Corporaton Z406 (“Inkjet”) (Courtesy of Z-Corporation)

Chrome Wheel (courtesy of Z-Corporation)

Electrolux (courtesy of Z-Corporation)

Baby seat (courtesy of Z-Corporation)

3-D Inkjet Manifold (courtesy of Z-Corporation)

Laminated Object Manufacturing (LOM) Laminating thin layers of paper, polymer or sheet steel, which have been cut using a numerically controlled laser. LOM prototypes can be sanded to reduce jagged edges, but are not able to be function tested such as for stress or strain due to the allotropic material properties of the laminate.   LOM

Service Bureaus Product manufacturer emails the solid model part file to the service bureau, typically as an *.STL file. The bureau uses its software to convert the *.STL file to a “sliced” file format specific to the selected prototyping hardware (i.e. FDM, SLA, SLS, LOM), Part is fabricated along with any duplicates. Part(s) may then be overnight-mailed to the product manufacturer.

Which Prototyping Method is Best: Traditional or Rapid? Shape generating compatibility – Can the material be formed into the needed geometric features to adequately represent the part? Function testing validity – Are the material properties representative, or scalable such that the part when reduced (or expanded) in size, can be validly tested? Fabrication costs – Will the prototype costs for materials and labor be acceptable? Fabrication time – How long will it take to fabricate the original and one or more duplicates?

Engineering Tests Mechanical / modes of failure Manufacturability Operation / maintenance Safety Environmental Engineering tests ≠ Experiments (Experiments validate phenomena)

Engineering Tests Briefly describe the difference between engineering tests and scientific experiments. Scientific experiments establish relationships between causes and effects. That is, they determine scientific principles. For example, a force exerted on a mass causes it to accelerate (effect). Engineering tests validate the application of principles given specific assumptions. For example, will a given sized motor produce enough torque given the frictional losses in the system.

1. Mechanical modes of failure static strength fatigue deflection/stiffness creep, impact vibration thermal/heat transfer/fluid energy consumption / production friction (i.e. too much, too little) wear lubrication corrosion life, reliability

2. Manufacturability concerns process compatibility/precision process technology readiness raw material quality assembly

3. Operation and or maintenance concerns styling/aesthetics ergonomics maintenance repairs

4. Safety concerns risk to user, products liability risk to consumer /society safety codes, standards (UL, NHTSA) risk to production worker (e.g. OSHA) National Highway Traffic Safety Administration (NHTSA) Underwriters Laboratories Inc. (UL) Occupational Safety and Health Administration (OSHA)

5. Environmental protection concerns air quality, noise water - quality, quantity solid waste – hazardous materials radioactivity – fallout

Test plans – written and approved Objectives – list of items (parts, systems, models) to be tested purposes for which the tests are being conducted Workscope – narrative description: type of tests, test descriptions/procedures, experimental setup, experimental controls, design of experiments test matrix, and list of deliverables. Budget Schedule Examples: 1, 2, 3

Summary Companies build and test prototypes to ensure form, fit and function. Product development tests include: product-concept, proof-of-concept, virtual, alpha, beta, and preproduction. Prototypes can be built using traditional and rapid prototyping methods and materials. Rapid prototyping methods include NC/CNC, SLA, FDM, LOM, SLS, and 3-D Inkjet printing. Rapid prototyping takes advantage of CAD Part and product testing can include tests for: mechanical modes of failure, manufacturability, user operation & maintenance, safety and environmental protection. Product development often requires the preparation and completion of a detailed test plan.