Isaac Gang University of Mary Hardin-Baylor

Slides:



Advertisements
Similar presentations
Computer Graphics - Shading -
Advertisements

Computer Graphics Shading Lecture 13 John Shearer
1 Graphics CSCI 343, Fall 2013 Lecture 18 Lighting and Shading.
CAP 4703 Computer Graphic Methods Prof. Roy Levow Chapter 6.
Virtual Realism LIGHTING AND SHADING. Lighting & Shading Approximate physical reality Ray tracing: Follow light rays through a scene Accurate, but expensive.
1 Computer Graphics By : Mohammed abu Lamdy ITGD3107 University of Palestine Supervision: Assistant Professor Dr. Sana’a Wafa Al-Sayegh.
Light Issues in Computer Graphics Presented by Saleema Amershi.
1. What is Lighting? 2 Example 1. Find the cubic polynomial or that passes through the four points and satisfies 1.As a photon Metal Insulator.
Based on slides created by Edward Angel
1 Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009 Shading I.
University of New Mexico
Lighting and Shading Wen-Chieh (Steve) Lin
1 CSCE 641: Computer Graphics Lighting Jinxiang Chai.
Objectives Learn to shade objects so their images appear three- dimensional Learn to shade objects so their images appear three- dimensional Introduce.
University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2005 Tamara Munzner Lighting and Shading Week.
CS5500 Computer Graphics March 26, Shading Reference: Ed Angel’s book.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Shading I Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Course Website: Computer Graphics 16: Illumination.
LIGHTING Part One - Theory based on Chapter 6. Lights in the real world Lights bounce off surfaces and reflect colors, scattering light in many directions.
Shading Surface can either (both) 1.Emit light. E.g. light bult 2.Reflect light. E.g. Mirror.
CS 480/680 Computer Graphics Shading I Dr. Frederick C Harris, Jr.
Illumination.
Fundamentals of Computer Graphics Part 6 Shading prof.ing.Václav Skala, CSc. University of West Bohemia Plzeň, Czech Republic ©2002 Prepared with Angel,E.:
CS 445 / 645: Introductory Computer Graphics
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
1 Shading I Shandong University Software College Instructor: Zhou Yuanfeng
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Chapter 6: Shading Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Shading (introduction to rendering). Rendering  We know how to specify the geometry but how is the color calculated.
1 Chapter 6 Shading. 2 Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build.
CSC418 Computer Graphics n Illumination n Lights n Lightinging models.
David Luebke 1 10/26/2015 Lighting CS 445/645 Introduction to Computer Graphics David Luebke, Spring 2003.
University of Texas at Austin CS 378 – Game Technology Don Fussell CS 378: Computer Game Technology Basic Rendering Pipeline and Shading Spring 2012.
1 Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 Shading I Ed Angel Professor of Computer Science, Electrical and Computer Engineering,
Illumination and Shading
1 Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science.
Lecture Fall 2001 Illumination and Shading in OpenGL Light Sources Empirical Illumination Shading Transforming Normals Tong-Yee Lee.
Shading. For Further Reading Angel 7 th Ed: ­Chapter 6 2.
Written by: Itzik Ben Shabat Technion - Israel Institute of Technology Faculty of Mechanical Engineering Laboratory for CAD & Lifecycle Engineering Lab.
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
OpenGL Shading. 2 Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build.
Lighting and Reflection Angel Angel: Interactive Computer Graphics5E © Addison-Wesley
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
Computer Graphics Lecture 25 Fasih ur Rehman. Last Class Shading.
1 CSCE 441: Computer Graphics Lighting Jinxiang Chai.
Computer Graphics Ken-Yi Lee National Taiwan University (the slides are adapted from Bing-Yi Chen and Yung-Yu Chuang)
Computer Graphics: Illumination
Illumination and Shading. Illumination (Lighting) Model the interaction of light with surface points to determine their final color and brightness OpenGL.
C O M P U T E R G R A P H I C S Guoying Zhao 1 / 55 C O M P U T E R G R A P H I C S Guoying Zhao 1 / 55 Computer Graphics Three-Dimensional Graphics V.
Illumination : Hearn & Baker Ch. 10
7. Illumination Phong Illumination Diffuse, Specular and Ambient
Shading CS 465 Lecture 4 © 2004 Steve Marschner • 1.
Hank Childs, University of Oregon
© University of Wisconsin, CS559 Spring 2004
Shading To determine the correct shades of color on the surface of graphical objects.
Hank Childs, University of Oregon
Unit-7 Lighting and Shading
Models and Architectures
Isaac Gang University of Mary Hardin-Baylor
CSC461: Lecture 23 Shading Computation
Introduction to Computer Graphics with WebGL
Introduction to Computer Graphics with WebGL
CSE 470 Introduction to Computer Graphics Arizona State University
Fundamentals of Computer Graphics Part 6 Shading
CS5500 Computer Graphics April 10, 2006.
Lighting and Shading (I)
CS 480/680 Computer Graphics Shading.
CS 480/680 Computer Graphics Shading.
Shading in OpenGL Ed Angel Professor Emeritus of Computer Science
Lighting Calculations
Shading II Ed Angel Professor Emeritus of Computer Science
Presentation transcript:

Isaac Gang University of Mary Hardin-Baylor Shading I Isaac Gang University of Mary Hardin-Baylor E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Objectives Learn to shade objects so their images appear three-dimensional Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Why we need shading Suppose we build a model of a sphere using many polygons and color it with glColor. We get something like But we want E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Shading Why does the image of a real sphere look like Light-material interactions cause each point to have a different color or shade Need to consider Light sources Material properties Location of viewer Surface orientation E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scattering Light strikes A Some of scattered light strikes B Some scattered Some absorbed Some of scattered light strikes B Some of this scattered light strikes A and so on E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Rendering Equation The infinite scattering and absorption of light can be described by the rendering equation Cannot be solved in general Ray tracing is a special case for perfectly reflecting surfaces Rendering equation is global and includes Shadows Multiple scattering from object to object E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Global Effects shadow multiple reflection translucent surface E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Local vs Global Rendering Correct shading requires a global calculation involving all objects and light sources Incompatible with pipeline model which shades each polygon independently (local rendering) However, in computer graphics, especially real time graphics, we are happy if things “look right” Exist many techniques for approximating global effects E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light-Material Interaction Light that strikes an object is partially absorbed and partially scattered (reflected) The amount reflected determines the color and brightness of the object A surface appears red under white light because the red component of the light is reflected and the rest is absorbed The reflected light is scattered in a manner that depends on the smoothness and orientation of the surface E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Light Sources General light sources are difficult to work with because we must integrate light coming from all points on the source E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Light Sources Point source Spotlight Ambient light Model with position and color Distant source = infinite distance away (parallel) Spotlight Restrict light from ideal point source Ambient light Same amount of light everywhere in scene Can model contribution of many sources and reflecting surfaces E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Surface Types The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflected the light A very rough surface scatters light in all directions rough surface smooth surface E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Phong Model A simple model that can be computed rapidly Has three components Diffuse Specular Ambient Uses four vectors To source To viewer Normal Perfect reflector E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Ideal Reflector Normal is determined by local orientation Angle of incidence = angle of relection The three vectors must be coplanar r = 2 (l · n ) n - l E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Lambertian Surface Perfectly diffuse reflector Light scattered equally in all directions Amount of light reflected is proportional to the vertical component of incoming light reflected light ~cos qi cos qi = l · n if vectors normalized There are also three coefficients, kr, kb, kg that show how much of each color component is reflected E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Specular Surfaces Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors) Smooth surfaces show specular highlights due to incoming light being reflected in directions concentrated close to the direction of a perfect reflection specular highlight E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Modeling Specular Relections Phong proposed using a term that dropped off as the angle between the viewer and the ideal reflection increased Ir ~ ks I cosaf f shininess coef reflected intensity incoming intensity absorption coef E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

The Shininess Coefficient Values of a between 100 and 200 correspond to metals Values between 5 and 10 give surface that look like plastic cosa f -90 f 90 E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012