Vectors and Scalars AP Physics B.

Slides:



Advertisements
Similar presentations
Please grab the copies for AP from the desk to the right of the door
Advertisements

VECTORS.
Kinematics in Two Dimensions; Vectors
Vectors and Scalars AP Physics C.
Vectors and Scalars AP Physics C.
Vector addition, subtraction Fundamentals of 2-D vector addition, subtraction.
Vectors and Scalars.
Vectors and Scalars AP Physics B. Scalar A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude – A.
Vectors and Scalars A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude – A numerical value with.
Vectors and Scalars AP Physics B.
Scalars and Vectors. Scalar A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude – A numerical value.
Vectors & Scalars Vectors are measurements which have both magnitude (size) and a directional component. Scalars are measurements which have only magnitude.
Forces in 2D Chapter Vectors Both magnitude (size) and direction Magnitude always positive Can’t have a negative speed But can have a negative.
College Physics, 7th Edition
Kinematics and Dynamics
Describe motion in terms of frame of reference Express scalar and vector quantities Understand the relationship between scalar and vector quantities.
Trigonometry and Vectors Motion and Forces in Two Dimensions SP1b. Compare and constract scalar and vector quantities.
Projectile motion can be described by vertical components and horizontal components of motion. Unit 2: Projectile Motion.
Vector and Vector Resolution. Scalar Vector Vectors.
3.1 & 3.2 Vectors & Scalars. Biblical Reference The Lord will grant that the enemies who rise up against you will be defeated before you. They will come.
Vectors and Scalars Physics.
Scalar and vector quantities 1 Starter Put a cross in the centre of your graph paper (landscape)and draw the following movement: (1 pace = 1 cm) From.
Vectors and Scalars. Physics 11 - Key Points of the Lesson 1.Use the tip-to-tail method when adding or subtracting vectors 2.The sum of all vectors is.
Measurement in Physics AP Physics 1. SI units for Physics The SI stands for "System International”. There are 3 fundamental SI units for LENGTH, MASS,
Copyright © by Holt, Rinehart and Winston. All rights reserved. ResourcesChapter menu Chapter 3 Scalars and Vectors A scalar is a physical quantity that.
VECTORS Wallin.
Vectors and Scalars Physics 1 - L.
Vectors AP Physics C.
Vectors and Scalars AP Physics.
General Physics 101 PHYS Dr. Zyad Ahmed Tawfik
Vectors and Scalars AP Physics B.
Vectors AP Physics.
Vectors and Scalars This is longer than one class period. Try to start during trig day.
VECTORS Honors Physics.
Vectors and Scalars AP Physics B.
Vectors AP Physics 1.
NM Unit 2 Vector Components, Vector Addition, and Relative Velocity
General Physics 101 PHYS Dr. Zyad Ahmed Tawfik
AP Physics B October 9, 2013 (1A) October 10, 2013 (3B)
Vectors List 5-8 situations that would involve 1 or 2 different forces acting on an object that cause it to move in a certain direction.
Vectors and Scalars AP Physics.
Chapter 3.
VECTORS Level 1 Physics.
Vectors and Scalars AP Physics B.
VECTORS Level 1 Physics.
Vectors and Scalars AP Physics C.
Kinematics AP Physics 1.
Vectors and Scalars AP Physics C.
Vectors and Scalars AP Physics B.
Prefixes for SI Units 10x Prefix Symbol exa E peta P tera T giga G
Vectors.
Vectors and Scalars AP Physics C.
Vectors and Scalars Physics.
Vectors and Scalars AP Physics C.
Do Now (Turn-in Project)
Constant Motion HS-PS1 Level 1.
Vectors and Scalars AP Physics B.
Vectors and Scalars AP Physics B.
Vectors and Scalars AP Physics B.
Vectors and Scalars AP Physics B.
Vectors.
Vectors A vector is a quantity which has a value (magnitude) and a direction. Examples of vectors include: Displacement Velocity Acceleration Force Weight.
VECTORS Level 1 Physics.
VECTORS.
VECTORS Level 1 Physics.
Vectors A vector is a quantity which has a value (magnitude) and a direction. Examples of vectors include: Displacement Velocity Acceleration Force Weight.
VECTORS Level 1 Physics.
Vector & Scalar Quantities
Vectors and Scalars AP Physics C.
Vectors and Scalars AP Physics C.
Presentation transcript:

Vectors and Scalars AP Physics B

Scalar Scalar Example Magnitude Speed 20 m/s Distance 10 m Age 15 years Heat 1000 calories A SCALAR is ANY quantity in physics that has MAGNITUDE, but NOT a direction associated with it. Magnitude – A numerical value with units.

Vector A VECTOR is ANY quantity in physics that has BOTH MAGNITUDE and DIRECTION. Vector Magnitude & Direction Velocity 20 m/s, N Acceleration 10 m/s/s, E Force 5 N, West Vectors are typically illustrated by drawing an ARROW above the symbol. The arrow is used to convey direction and magnitude.

Applications of Vectors VECTOR ADDITION – If 2 similar vectors point in the SAME direction, add them. Example: A man walks 54.5 meters east, then another 30 meters east. Calculate his displacement relative to where he started? + 54.5 m, E 30 m, E Notice that the SIZE of the arrow conveys MAGNITUDE and the way it was drawn conveys DIRECTION. 84.5 m, E

Applications of Vectors VECTOR SUBTRACTION - If 2 vectors are going in opposite directions, you SUBTRACT. Example: A man walks 54.5 meters east, then 30 meters west. Calculate his displacement relative to where he started? 54.5 m, E - 30 m, W 24.5 m, E

Non-Collinear Vectors When 2 vectors are perpendicular, you must use the Pythagorean theorem. A man walks 95 km, East then 55 km, north. Calculate his RESULTANT DISPLACEMENT. Finish The hypotenuse in Physics is called the RESULTANT. 55 km, N Vertical Component Horizontal Component Start 95 km,E The LEGS of the triangle are called the COMPONENTS

BUT……what about the direction? In the previous example, DISPLACEMENT was asked for and since it is a VECTOR we should include a DIRECTION on our final answer. N W of N E of N N of E N of W W E N of E S of W S of E NOTE: When drawing a right triangle that conveys some type of motion, you MUST draw your components HEAD TO TOE. W of S E of S S

BUT…..what about the VALUE of the angle??? Just putting North of East on the answer is NOT specific enough for the direction. We MUST find the VALUE of the angle. To find the value of the angle we use a Trig function called TANGENT. 109.8 km 55 km, N q N of E 95 km,E So the COMPLETE final answer is : 109.8 km, 30 degrees North of East

What if you are missing a component? Suppose a person walked 65 m, 25 degrees East of North. What were his horizontal and vertical components? The goal: ALWAYS MAKE A RIGHT TRIANGLE! To solve for components, we often use the trig functions since and cosine. H.C. = ? V.C = ? 25 65 m

Example 23 m, E - = 12 m, W - = 14 m, N 6 m, S 20 m, N 35 m, E R A bear, searching for food wanders 35 meters east then 20 meters north. Frustrated, he wanders another 12 meters west then 6 meters south. Calculate the bear's displacement. 23 m, E - = 12 m, W - = 14 m, N 6 m, S 20 m, N 35 m, E R 14 m, N q 23 m, E The Final Answer: 26.93 m, 31.3 degrees NORTH or EAST

Example A boat moves with a velocity of 15 m/s, N in a river which flows with a velocity of 8.0 m/s, west. Calculate the boat's resultant velocity with respect to due north. 8.0 m/s, W 15 m/s, N Rv q The Final Answer : 17 m/s, @ 28.1 degrees West of North

Example A plane moves with a velocity of 63.5 m/s at 32 degrees South of East. Calculate the plane's horizontal and vertical velocity components. H.C. =? 32 V.C. = ? 63.5 m/s

Example A storm system moves 5000 km due east, then shifts course at 40 degrees North of East for 1500 km. Calculate the storm's resultant displacement. 1500 km V.C. 40 5000 km, E H.C. 5000 km + 1149.1 km = 6149.1 km R 964.2 km q The Final Answer: 6224.14 km @ 8.91 degrees, North of East 6149.1 km