Review of IBS: analytic and simulation studies

Slides:



Advertisements
Similar presentations
Copyright, 1996 © Dale Carnegie & Associates, Inc. Beyond Piwinski & Bjorken-Mtingwa: IBS theories, codes, and benchmarking Jie Wei Brookhaven National.
Advertisements

Frank Zimmermann, IBS in MAD-X, MAD-X Day, IBS in MAD-X Frank Zimmermann Thanks to J. Jowett, M. Korostelev, M. Martini, F. Schmidt.
Linear Collider Bunch Compressors Andy Wolski Lawrence Berkeley National Laboratory USPAS Santa Barbara, June 2003.
Halo calculations in ATF DR Dou Wang (IHEP), Philip Bambade (LAL), Kaoru Yokoya (KEK), Theo Demma (LAL), Jie Gao (IHEP) FJPPL-FKPPL Workshop on ATF2 Accelerator.
Initial Calculations of Intrabeam Scattering life times in ELIC lattices by Betacool code Chaivat Tengsirivattana CASA, Jefferson Lab University of Virginia.
SPACE CHARGE EFFECTS IN PHOTO-INJECTORS Massimo Ferrario INFN-LNF Madison, June 28 - July 2.
Prof. Reinisch, EEAS / Simple Collision Parameters (1) There are many different types of collisions taking place in a gas. They can be grouped.
A new algorithm for the kinetic analysis of intra-beam scattering in storage rings. P.R.Zenkevich*,O. Boine-Frenkenheim**, A. Ye. Bolshakov* *ITEP, Moscow,
Introduction Status of SC simulations at CERN
Lecture 5: Electron Scattering, continued... 18/9/2003 1
Beamstrahlung and energy acceptance K. Ohmi (KEK) HF2014, Beijing Oct 9-12, 2014 Thanks to Y. Zhang and D. Shatilov.
Copyright, 1996 © Dale Carnegie & Associates, Inc. Intra-beam Scattering -- a RHIC Perspective J. Wei, W. Fischer Collider-Accelerator Department EIC Workshop,
25-26 June, 2009 CesrTA Workshop CTA09 Electron Cloud Single-Bunch Instability Modeling using CMAD M. Pivi CesrTA CTA09 Workshop June 2009.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
New Progress of the Nonlinear Collimation System for A. Faus-Golfe J. Resta López D. Schulte F. Zimmermann.
Theoretical studies of IBS in the SPS F. Antoniou, H. Bartosik, T. Bohl, Y.Papaphilippou MSWG – LIU meeting, 1/10/2013.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
EXPERIMENTAL EVIDENCE FOR HADRONIC DECONFINEMENT In p-p Collisions at 1.8 TeV * L. Gutay - 1 * Phys. Lett. B528(2002)43-48 (FNAL, E-735 Collaboration Purdue,
Calorimeters Chapter 21 Chapter 2 Interactions of Charged Particles - With Focus on Electrons and Positrons -
Lattice design for IBS dominated beams August th, 2007 Yannis PAPAPHILIPPOU IBS ’07 – Intra Beam Scattering mini workshop, The Cockcroft Institute,
October 16, 2008 M. Martini 1 Intra-beam Scattering Studies for the CLIC damping Rings Status and Plan Michel Martini, CERN CLIC Workshop CERN, October.
M.E. Biagini, M. Boscolo, T. Demma (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC). Status of Multi-particle simulation of INFN.
1 Kinetics Effects in Multiple Intra-beam Scattering (IBS). P.R.Zenkevich*, A.E.Bolshakov*, O. Boine-Frankenheim** *ITEP, Moscow, Russia **GSI, Darmstadt,
Comparison between simulations and measurements in the LHC with heavy ions T. Mertens, R. Bruce, J.M. Jowett, H. Damerau,F. Roncarolo.
Oliver Boine-Frankenheim, HE-LHC, Oct , 2010, Malta Simulation of IBS (and cooling) Oliver Boine-Frankenheim, GSI, Darmstadt, Germany 1.
PHYS 3446 – Lecture #6 Monday, Sept. 15, 2008 Dr. Andrew Brandt
A.Shapovalov (DESY, Zeuthen) (MEPhI, Moscow, Russia)
Intra-beam Scattering in the LCLS Linac Zhirong Huang, SLAC Berlin S2E Workshop 8/21/2003.
GWENAEL FUBIANI L’OASIS GROUP, LBNL 6D Space charge estimates for dense electron bunches in vacuum W.P. LEEMANS, E. ESAREY, B.A. SHADWICK, J. QIANG, G.
By Verena Kain CERN BE-OP. In the next three lectures we will have a look at the different components of a synchrotron. Today: Controlling particle trajectories.
Numerical Model of an Internal Pellet Target O. Bezshyyko *, K. Bezshyyko *, A. Dolinskii †,I. Kadenko *, R. Yermolenko *, V. Ziemann ¶ * Nuclear Physics.
Design of a one-stage bunch compressor for ILC PAL June Eun-San Kim.
IBS Calculation Using BETACOOL He Zhang 2/26/2013 Jlab MEIC R&D Group Meeting.
Monday, Jan. 31, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #4 Monday, Jan. 31, 2005 Dr. Jae Yu 1.Lab Frame and Center of Mass Frame 2.Relativistic.
BBFP J. Wei’s Fokker-Planck solver for bunched beams November 21 st, 2007 CLIC Beam dynamics meeting Y. Papaphilippou.
2 February 8th - 10th, 2016 TWIICE 2 Workshop Instability studies in the CLIC Damping Rings including radiation damping A.Passarelli, H.Bartosik, O.Boine-Fankenheim,
Intrabeam scattering simulations and measurements F. Antoniou, Y. Papaphilippou CLIC Workshop 2013, 30/1/2013.
Intra-Beam scattering studies for CLIC damping rings A. Vivoli* Thanks to : M. Martini, Y. Papaphilippou *
Simulation of Intrabeam Scattering A. Vivoli*, M. Martini Thanks to : Y. Papaphilippou and F. Antoniou *
Parameter scan for the CLIC damping rings July 23rd, 2008 Y. Papaphilippou Thanks to H. Braun, M. Korostelev and D. Schulte.
T. Demma (INFN-LNF) In collaboration with: M. Boscolo (INFN-LNF) A. Chao, M.T.F. Pivi (SLAC). Macroparticle simulation of IBS in SuperB.
IBS and Touschek studies for the ion beam at the SPS F. Antoniou, H. Bartosik, Y. Papaphilippou, T. Bohl.
IntraBeam Scattering Calculation T. Demma, S. Guiducci SuperB Workshop LAL, 17 February 09.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
Laboratory system and center of mass system
Kinetics effects in multiple intra-beam scattering.
Envelope tracking as a tool for low emittance ring design
R. Bruce, M. Blaskiewicz, W. Fischer, J.M. Jowett, T. Mertens
Loss of Landau damping for reactive impedance and a double RF system
Electron Cloud, IBS, and Fast Ion Update
Benchmarking MAD, SAD and PLACET Characterization and performance of the CLIC Beam Delivery System with MAD, SAD and PLACET T. Asaka† and J. Resta López‡
HIAF Electron Cooling System &
Simulation of Luminosity Variation
Primary estimation of CEPC beam dilution and beam halo
Electron Cooling Simulation For JLEIC
Modelling and measurements of bunch profiles at the LHC FB
IntraBeam Scattering Calculation
IntraBeam Scattering Calculation
Intra-Beam Scattering modeling for SuperB and CLIC
sx* Limitations and Improvements Paths
Jeffrey Eldred, Sasha Valishev
Announcements Exam Details: Today: Problems 6.6, 6.7
R. Bartolini Diamond Light Source Ltd
Capture and Transmission of polarized positrons from a Compton Scheme
Simulation of Touschek Effects for DAFNE with Strong RF Focusing
Collective Effects and Beam Measurements in Particle Accelerators
Simulating transition crossing in the PS with HeadTail
2. Crosschecking computer codes for AWAKE
SPPC Longitudinal Dynamics
Radiation Damping - Low emittance lattices
Presentation transcript:

Review of IBS: analytic and simulation studies A. Vivoli* Thanks to : M. Martini, Y. Papaphilippou and F. Antoniou * E-mail : Alessandro.Vivoli@cern.ch

A. Vivoli, Review of IBS: analytic and simulation studies CONTENTS Motivation Conventional Calculation of IBS SIRE code Zenkevich-Bolshakov algorithm Results of simulations Conclusions & Outlook 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Introduction: Intra-Beam Scattering in DR IBS is the effect due to multiple Coulomb scattering between charged particles in the beam: P1’ P1 P2’ P2 F. Antoniou, IPAC10 Evolution of the emittance: IBS Growth Times IBS Radiation Damping Quantum Excitation Tk contain the effect of all the scattering processes in the beam at a given time. 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Introduction: Conventional theories of IBS Growth rates are calculated at different points of the lattice and then averaged over the ring: s1 s6 s2 s5 s3 s4 Conventional calculation of IBS effect in Accelerator Physics derive an estimation of Tk from the theories of Bjorken-Mtingwa or Piwinski. 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Bjorken-Mtingwa theory of IBS Useful references: J.D. Bjorken, S.K. Mtingwa, Part. Acc. Vol. 13, pp. 115-143 (1983). M. Conte, M. Martini, Part. Acc. Vol. 17, pp. 1-10 (1985). M. Zisman, S. Chattopadhyay, J. Bisognano, LBL-21270, ESG-15 (1986). K. Kubo, K. Oide, PRST-AB 4,124401 (2001). K.L.F. Bane, EPAC’02, Paris (2002). F. Zimmermann, CERN-AB-2006-002. 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Bjorken-Mtingwa theory of IBS P1’ P1 Let assume the bunch distribution is: P2’ P2 From arguments of relativistic quantum mechanics it is possible to estimate the transition rate for scattering from to Energy-momentum conservation Invariant Coulomb scattering amplitude: Derived from the Mott cross section in the non-relativistic limit and small-angle scattering approximation. Momentum change Scattering angle Momentum in the center-of mass 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Invariants of motion in the ring The motion of the particles in the ring can be expressed through 3 invariants (and 3 phases). Transversal invariants: Longitudinal invariant: Emittance: 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Bjorken-Mtingwa theory of IBS The rms emittance is evaluated as: We can then estimate the emittance growth due to IBS as: In conclusion we have: We still need a distribution. We choose a Gaussian: Normalization constant 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Bjorken-Mtingwa theory of IBS With this choice almost all the integrals reduce to gaussian integrals: In the end we have: With: 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Bjorken-Mtingwa theory of IBS Conte and Martini found out that the formula can be reduced to: With: are functions of: 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies Coulomb logarithm It is not a well defined quantity. It comes from the integration over the scattering angle. There is not complete agreement to define it. One option is as follows. Debye length Maximum impact parameter Minimum impact parameter Transverse temperature Particle volume density Classical distance of closest approach Quantum mechanical diffraction limit from the nuclear radius 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies Piwinski theory of IBS Useful references: A. Piwinski, Proc. 9th Conf. on High Energy Accelerators, SLAC, Stanford (1974). M. Martini, CERN PS/84-9 (AA) (1984). A. Piwinski, CERN-87-03-V-1, pp. 402-415 (1985). A. Piwinski, CERN-92-01, pp. 226-242 (1991). K.L.F. Bane, EPAC’02, Paris (2002). Classical approach in the determination of 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Software for IBS and Radiation Effects Goals: Follow the evolution of the particle distribution in the DR (we are not sure it remains Gaussian). Calculate IBS effect for any particle distribution (in case it doesn’t remain Gaussian). s1 s6 The lattice is read from a MADX file containing the Twiss functions. Particles are tracked from point to point in the lattice by their invariats (no phase tracking up to now). At each point of the lattice the scattering routine is called. s2 s5 s4 s3 6-dim Coordinates of particles are calculated. Particles of the beam are grouped in cells. Momentum of particles is changed because of scattering. Invariants of particles are recalculated. Radiation damping and excitation effects are evaluated at the end of every loop. A routine has also been implemented in order to speed up the calculation of IBS effect. 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Intra-beam Scattering Relativistic Center of Mass Frame: Laboratory Frame: Tranformation Matrix: Lorentz Tranformation: Caracterization of the Center of Mass frame: We conclude that: Finally: 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Intra-beam Scattering Let us take 2 colliding particles in the beam: The transformation matrix to the Beam Rest Frame is: Assuming the BRF is the CMF of the particles, we derive: In conclusion: 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Intra-beam Scattering Applying the rotation of the system: In conclusion, we have: z’ Energy-Momentum conservation imposes: s’ x’ 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Rutherford Cross Section Pf z’ Pi q r b s’ Rutherford formula: Rutherford Cross Section: Cut off of angle/impact parameter: Distribution of scattering angles: 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

Intra-beam Scattering Average momentum change: Coulomb logarithm: sIBS vCM -vCM 2 VCM Dt’ Relativistic effects: Number of collisions in LF: Number of particles met in CMF: Statistical approximation: Total momentum change: 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies Energy Conservation Energy is not conserved! To recover the energy conservation (at the 1st order): For consistency: Total momentum change: (P.R. Zenkevich, O. Boine-Frenkenheim, A. E. Bolshakov, A new algorithm for the kinetic analysis of inta-beam scattering in storage rings, NIM A, 2005) 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies Lattice Recurrences Elements of the lattice with twiss functions differing of less than 10% are considered equal. Lattice: First reduction: + 3 X + + 3 X + ( ) Second reduction: + 2 X + 3 X + + CLIC DR LATTICE: 14400 elements 420 elements 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

SIRE: Benchmarking (Gaussian Distribution) CLIC DR F. Antoniou, IPAC10 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

SIRE: Benchmarking (Gaussian Distribution) on LHC 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

SIRE: Distribution Study Case studies: A – Damping + QE B – Damping + IBS + QE C – Damping + IBS D – IBS Parameter A B C D INITIAL gex, gey,szsp (m,m,eV m) 74.3e-6,1.8e-6, 1.71e+5 74.3e-6, 1.8e-6, 1.70e+5 74.3e-6, 1.8e-6, 1.71e+5 229.7e-9,3.7e-9, 2.87e+3 FINAL 229.7e-9, 3.76e-9, 2.88e+3 435.6e-9, 5.54e-9, 3.65e+3 458.5e-9, 3.61e-9, 1.58e+3 1.12e-6, 1.16e-8, 9.61e+3 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies CLIC DR A: Damping + QE Simulation of the CLIC Damping Rings case A: Beam parameters ex (m) ey (m) ez (eV m) Injection 13.27e-9 321.6e-12 1.71e+5 Extraction (SIRE) 4.104e-11 6.72e-13 2.88e+3 Extraction (MAD-X) 4.102e-11 6.69e-13 2.87e+3 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

SIRE: IBS Distribution study A: Damping + QE Parameter c2999 Confidence DP/P 964.2251 0.7876 X 976.2195 0.6988 Y 957.4559 0.8290 Parameter Value Eq. ex (m rad) 4.1039e-011 Eq. ey (m rad) 6.7113e-013 Eq. sd 1.0901e-3 Eq. sz (m) 9.229e-4 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies CLIC DR D: IBS Simulation of the CLIC Damping Rings case D: Beam parameters ex (m) ey (m) ez (eV m) Injection 4.104e-11 6.663e-13 2871 Extraction (SIRE) 2.001e-010 2.064e-12 9609 1/Tx (s-1) 1/Ty (s-1) 1/Tz (s-1) Bjorken-Mtingwa 29.6 21.0 28.9 SIRE compressed (Gauss) 21.6 17.8 20.6 SIRE not compressed (Gauss) 18.1 18.0 19.3 SIRE compressed 17.0 14.6 17.2 SIRE not compressed 18.3 15.3 16.5 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

SIRE: IBS Distribution study D: IBS Parameter c2999 Confidence Dp/p 3048.7 <1e-15 X 1441.7 Y 1466.9 Parameter Value Eq. ex (m rad) 2.001e-10 Eq. ey (m rad) 2.064e-12 Eq. sd 1.992e-3 Eq. sz (m) 1.687e-3 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

SIRE: IBS Distribution study D: IBS Parameter c237 Confidence Sample % DP/P 38.81 0.39 26 X 36.73 0.48 25 Y 46.83 0.13 22 Parameter Value ap 5.281e+7 bp 1.568 ax 3.840e+10 bx 1.280 ay 4.557e+12 by 1.196 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies SIRE: SLS simulations 1/Tx (s-1) 1/Ty (s-1) 1/Tz (s-1) MADX (B-M) 20 37 59 SIRE (compressed) 15.6 24.5 47.2 SIRE (not compressed) 14.4 23.4 42.2 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies SIRE: SLS simulations IBS ON IBS ON IBS ON IBS OFF IBS OFF IBS OFF Beam parameters ex (m) ey (m) ez (eV m) Initial 1.68e-8 6.01e-12 71571 Final 6.08e-9 2.33e-12 8945 Equilibrium (NO IBS) 5.59e-9 2.02e-12 7921 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies Conclusions & Outlook Simulation code SIRE has been developed to simulate IBS effect in storage/damping rings. Benchmarking with conventional IBS theories gave good agreement. Evolution of the particle distribution shows deviations from Gaussian behaviour due to IBS effect. Comparison with data from SLS could provide the possibility of Benchmarking with real data Tuning of code parameters (number of cells, number of interactions, etc.) Revision of the theory or theory parameters (Coulomb log, approximation used, etc.) 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies

A. Vivoli, Review of IBS: analytic and simulation studies THANKS. The End 1/16/2019 A. Vivoli, Review of IBS: analytic and simulation studies