A Novel Component of Epidermal Cell–Matrix and Cell–Cell Contacts: Transmembrane Protein Type XIII Collagen  Sirkku Peltonen, Maria Hentula, Pasi Hägg,

Slides:



Advertisements
Similar presentations
Nan-Hyung Kim, Ai-Young Lee  Journal of Investigative Dermatology 
Advertisements

Volume 66, Issue 1, Pages (July 2004)
Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris  Sara N. Stahley, Maxine F.
Skin-Specific Expression of ank-393, a Novel Ankyrin-3 Splice Variant
Proliferation, Cell Cycle Exit, and Onset of Terminal Differentiation in Cultured Keratinocytes: Pre-Programmed Pathways in Control of C-Myc and Notch1.
The Calcium-Sensing Receptor-Dependent Regulation of Cell–Cell Adhesion and Keratinocyte Differentiation Requires Rho and Filamin A  Chia-Ling Tu, Wenhan.
Tetraspanins are Localized at Motility-Related Structures and Involved in Normal Human Keratinocyte Wound Healing Migration  Pablo F. Peñas, Amaro García-Díez,
BM-40(Osteonectin, SPARC) Is Expressed Both in the Epidermal and in the Dermal Compartment of Adult Human Skin  Nicholas Hunzelmann, Martin Hafner, Sabine.
Reevaluation of the Normal Epidermal Calcium Gradient, and Analysis of Calcium Levels and ATP Receptors in Hailey–Hailey and Darier Epidermis  Pekka T.
Basement Membrane Zone Remodeling During Appendageal Development in Human Fetal Skin. The Absence of Type VII Collagen is Associated with Gelatinase-A.
Vitali Alexeev, Kyonggeun Yoon  Journal of Investigative Dermatology 
Overexpression of Serpin Squamous Cell Carcinoma Antigens in Psoriatic Skin  Atsushi Takeda, Dousei Higuchi, Tadahito Takahashi, Masashi Ogo, Peter Baciu,
Differential Expression of a Novel Gene in Response to hsp27 and Cell Differentiation in Human Keratinocytes  Mojgan Hell-Pourmojib, Peter Neuner, Robert.
Coexpression of Integrin αvβ3 and Matrix Metalloproteinase-2 (MMP-2) Coincides with MMP-2 Activation: Correlation with Melanoma Progression  Uta B. Hofmann,
Upregulation of Tumor Suppressor Protein Neurofibromin in Normal Human Wound Healing and In Vitro Evidence for Platelet Derived Growth Factor (PDGF) and.
EGF Upregulates, Whereas TGF-β Downregulates, the Hyaluronan Synthases Has2 and Has3 in Organotypic Keratinocyte Cultures: Correlations with Epidermal.
Paul G. Genever, Sarah J. Maxfield, Tim M. Skerry 
Kinesin and Kinectin Can Associate with the Melanosomal Surface and Form a Link with Microtubules in Normal Human Melanocytes1  Garnet Vancoillie, Jo.
Constitutive Overexpression of Human Telomerase Reverse Transcriptase but Not c- myc Blocks Terminal Differentiation In Human HaCaT Skin Keratinocytes 
Colocalization of Kindlin-1, Kindlin-2, and Migfilin at Keratinocyte Focal Adhesion and Relevance to the Pathophysiology of Kindler Syndrome  J.E. Lai-Cheong,
Upregulation of Class II β-Tubulin Expression in Differentiating Keratinocytes  Woong-Hee Lee, Joo-Young Kim, Young-Sik Kim, Hye-Joon Song, Ki-Joon Song,
Zebrafish: A Model System to Study Heritable Skin Diseases
Marie-Thérèse Leccia  Journal of Investigative Dermatology 
Enhancing 1α-Hydroxylase Activity with the 25-Hydroxyvitamin D-1α-Hydroxylase Gene in Cultured Human Keratinocytes and Mouse Skin  Tai C. Chen, Xue Hong.
The Adherens Junction: A Mosaic of Cadherin and Nectin Clusters Bundled by Actin Filaments  Indrajyoti Indra, Soonjin Hong, Regina Troyanovsky, Bernadett.
Jackie R. Bickenbach  Journal of Investigative Dermatology 
Katrin Pauls, Margarete Schön, Robert C
Degradation by Stratum Corneum Proteases Prevents Endogenous RNase Inhibitor from Blocking Antimicrobial Activities of RNase 5 and RNase 7  Arby Abtin,
Novel Homozygous and Compound Heterozygous COL17A1 Mutations Associated with Junctional Epidermolysis Bullosa  Michaela Floeth, Heike Schäcke, Nadja Hammami-Hauasli,
S100A7 (Psoriasin) Interacts with Epidermal Fatty Acid Binding Protein and Localizes in Focal Adhesion-Like Structures in Cultured Keratinocytes  Monica.
New Function for NF1 Tumor Suppressor
Protein C Inhibitor is Expressed in Keratinocytes of Human Skin
H. Randolph Byers, Mina Yaar, Mark S. Eller, Nicole L
SERCA2 Dysfunction in Darier Disease Causes Endoplasmic Reticulum Stress and Impaired Cell-to-Cell Adhesion Strength: Rescue by Miglustat  Magali Savignac,
Characterization of the CC Chemokine Receptor 3 on Human Keratinocytes
Μ-Crystallin, Thyroid Hormone-binding Protein, is Expressed Abundantly in the Murine Inner Root Sheath Cells  Noriaki Aoki, Kaoru Ito, Masaaki Ito  Journal.
Characterization of Kdap, A Protein Secreted by Keratinocytes
Elastin Peptides Induce Migration and Terminal Differentiation of Cultured Keratinocytes Via 67 kDa Elastin Receptor in Vitro: 67 kDa Elastin Receptor.
Inherited Junctional Epidermolysis Bullosa in the German Pointer: Establishment of a Large Animal Model  Annabelle Capt, Flavia Spirito, Eric Guaguere,
Noritaka Oyama, Keiji Iwatsuki, Yoshimi Homma, Fumio Kaneko 
Xuming Mao, Eun Jung Choi, Aimee S. Payne 
The Majority of Keratinocytes Incorporate Intradermally Injected Plasmid DNA Regardless of Size but Only a Small Proportion of Cells Can Express the Gene.
Expression of T-Cadherin in Basal Keratinocytes of Skin
A Novel Homozygous Mutation Affecting Integrin α6 in a Case of Junctional Epidermolysis Bullosa with Pyloric Atresia Detected In Utero by Ultrasound Examination 
Epidermal Tight Junctions: ZO-1 and Occludin are Expressed in Mature, Developing, and Affected Skin and In Vitro Differentiating Keratinocytes  Kati Pummi,
Deletion of the Cytoplasmatic Domain of BP180/Collagen XVII Causes a Phenotype with Predominant Features of Epidermolysis Bullosa Simplex  Marcel Huber,
Molecular Architecture of Tight Junctions of Periderm Differs From That of the Maculae Occludentes of Epidermis  Kazumasa Morita, Yoko Yoshida, Yoshiki.
Trangenic Misexpression of the Differentiation-Specific Desmocollin Isoform 1 in Basal Keratinocytes  Frank Henkler, Molly Strom, Kathleen Mathers, Hayley.
Keratinocytes Express the CD146 (Muc18/S-Endo) Antigen in Tissue Culture and During Inflammatory Skin Diseases1  Wolfgang Weninger, Michael Rendl, Michael.
Bikunin, a Serine Protease Inhibitor, is Present on the Cell Boundary of Epidermis  Cui Chang-Yi, Yoshinori Aragane, Akira Maeda, Piao Yu-Lan, Masae Takahashi,
Rab3a and SNARE Proteins: Potential Regulators of Melanosome Movement
Multiple Epidermal Connexins are Expressed in Different Keratinocyte Subpopulations Including Connexin 31  Wei-Li Di, Elizabeth L. Rugg, Irene M. Leigh,
Organization of Stem Cells and Their Progeny in Human Epidermis
Overexpression of the Oncofetal Fn Variant Containing the EDA Splice-in Segment in the Dermal–Epidermal Junction of Psoriatic Uninvolved Skin  Kathleen.
Ramine Parsa, Annie Yang, Frank McKeon, Howard Green 
A Novel Gene Expressed in Human Keratinocytes with Long-Term In Vitro Growth Potential is Required for Cell Growth  Laure Aurelian, Cynthia C. Smith,
Wook Lew  Journal of Investigative Dermatology 
Nan-Hyung Kim, Ai-Young Lee  Journal of Investigative Dermatology 
Volume 10, Issue 9, Pages (May 2000)
Expression of FcRn, the MHC Class I-Related Receptor for IgG, in Human Keratinocytes  Karla Cauza, Gabriele Hinterhuber, Ruth Dingelmaier-Hovorka, Karin.
Expression of Opsin Molecule in Cultured Murine Melanocyte
Alterations in Desmosome Size and Number Coincide with the Loss of Keratinocyte Cohesion in Skin with Homozygous and Heterozygous Defects in the Desmosomal.
Thilo Jakob, Mark C. Udey  Journal of Investigative Dermatology 
Loss of Cell Adhesion in Dsg3bal–Pas Mice with Homozygous Deletion Mutation (2079del14) in the Desmoglein 3 Gene  Leena Pulkkinen, Yoo Won Choi, Anisha.
Gli1 Protein is Expressed in Basal Cell Carcinomas, Outer Root Sheath Keratinocytes and a Subpopulation of Mesenchymal Cells in Normal Human Skin  Lucy.
Aldo-Keto Reductase 1C3 Is Expressed in Differentiated Human Epidermis, Affects Keratinocyte Differentiation, and Is Upregulated in Atopic Dermatitis 
Identification of Skn-1n, a Splice Variant Induced by High Calcium Concentration and Specifically Expressed in Normal Human Keratinocytes  Koji Nakajima,
Permeability Barrier Disruption Increases the Level of Serine Palmitoyltransferase in Human Epidermis  Francesca Alessandrini, Dr., Heidrun Behrendt 
Marcel F. Jonkman, Prof. Dr, Hendri H
Matrix Metalloproteinase Inhibitor BB-3103 Unlike the Serine Proteinase Inhibitor Aprotinin Abrogates Epidermal Healing of Human Skin Wounds Ex Vivo1 
Presentation transcript:

A Novel Component of Epidermal Cell–Matrix and Cell–Cell Contacts: Transmembrane Protein Type XIII Collagen  Sirkku Peltonen, Maria Hentula, Pasi Hägg, Heli Ylä-Outinen, Juha Tuukkanen, Jouni Lakkakorpi, Marko Rehn, Taina Pihlajaniemi, Juha Peltonen  Journal of Investigative Dermatology  Volume 113, Issue 4, Pages 635-642 (October 1999) DOI: 10.1046/j.1523-1747.1999.00736.x Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions

Figure 1 Type XIII collagen is expressed at cell–cell and cell-basement membrane contact sites in normal human epidermis. Frozen sections of human skin were subjected to IIF with polyclonal antibodies to the NC1 and NC3 domains of type XIII collagen and analyzed using conventional microscopy (a) or CLSM (b–d). (a) The antibody against the NC3 domain revealed a positive immunoreaction at the periphery of keratinocytes of all epidermal layers and at dermal–epidermal junction. (b) The antibody to the NC1 domain revealed an essentially similar labeling pattern as the NC3 antibody, with the exception that the dermal–epidermal junction was more intensely labeled with the NC1 domain-specific antibody. (c) High magnification showed that the labeling pattern for the NC1 domain was patchy and organized in a linear manner, apparently in association with plasma membrane. (d) E-cadherin labeling of the epidermis resembled that of the NC1 domain of type XIII collagen. Scale bars: (a, b) 10 μm; (c, d) 5 μm. Journal of Investigative Dermatology 1999 113, 635-642DOI: (10.1046/j.1523-1747.1999.00736.x) Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions

Figure 2 Double immunolabeling suggests distinct subcellular locations for type XIII collagen and desmosomal proteins in epidermis. Double immunofluorescence labelings of the same 0.5 μm optical sections were analyzed with CLSM. (a, c, d), type XIII collagen and desmoplakin; (b, e) type XIII collagen and desmoglein. Red represents type XIII collagen and green desmosomal antigens. In low magnification, yellow color represents either colocalization or close spatial association of these antigens, the signals of which were somewhat mixed in low magnification frames a and b. A computer-assisted analysis of the pixels covering the epidermis in frame a, however, revealed only 8.7% colocalization of the immunosignals representative of type XIII collagen and desmoplakin (for details, see text). (c) A randomly selected field taken with high original magnification and (d) an enlarged area pointed by an arrow in (a) reveal that the distribution of type XIII collagen and desmoplakin was often mutually exclusive. (b, e) Double immunolabeling with type XIII collagen and desmoglein antibodies also showed only little colocalization. Scale bars: (a, b) 10 mm; (c, e) 2 μm; (d) 1 μm. Journal of Investigative Dermatology 1999 113, 635-642DOI: (10.1046/j.1523-1747.1999.00736.x) Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions

Figure 3 Type XIII collagen and components of adherens junctions, E-cadherin, vinculin, and α-catenin co-localize in epidermis. Double immunofluorescence labelings of the same 0.5 μm optical sections were analyzed with CLSM. (a, d, e) Type XIII collagen and E-cadherin; (b, f) type XIII collagen and vinculin; (c, g) type XIII collagen and α-catenin. Red demonstrates type XIII collagen and green adherens junction proteins. A computer-assisted analysis of the pixels covering the epidermis in frame a demonstrated 43.9% colocalization of the immunosignals representative of type XIII collagen and E-cadherin above the basement membrane zone (for details, see text). (d) A randomly selected field taken with high original magnification, and (e) an enlarged area pointed by an arrow in figure a reveal marked colocalization of type XIII collagen and E-cadherin in a patchy linear manner, apparently in close association with plasma membrane. (b, f) Double labeling for type XIII collagen and vinculin revealed partial colocalization in the cell–cell contact sites and in the dermal–epidermal junction. (c, g) Type XIII collagen and α-catenin showed partial colocalization in the cell–cell contact sites. Scale bars: (a–c) 10 μm; (d, f, g) 2 μm; (e) 1 μm. Journal of Investigative Dermatology 1999 113, 635-642DOI: (10.1046/j.1523-1747.1999.00736.x) Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions

Figure 4 Type XIII collagen is targeted to different subcellular locations in keratinocytes under different culture conditions. (a) Type XIII collagen was located to bright intracellular spots shortly after plating keratinocytes on culture substratum as visualized by IIF and subsequent CLSM analysis. (b) Keratinocytes cultured in low calcium concentration expressed type XIII collagen peripherally in short streaks (arrows). (c) Keratinocytes maintained in high calcium concentration revealed type XIII collagen epitopes in cell–cell contacts as well as in the focal contacts of the cells located in the periphery of the cell groups (arrow). Antibody to NC3 in (a) and (b); antibody to NC1 in (c). Scale bars: (a) 5 μm; (b) 10 μm; (c) 20 μm. Journal of Investigative Dermatology 1999 113, 635-642DOI: (10.1046/j.1523-1747.1999.00736.x) Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions

Figure 5 Type XIII collagen co-localizes with vinculin and talin in focal adhesions of cultured keratinocytes maintained in low-calcium concentration. Double immunofluorescence labelings of cultured keratinocytes were analyzed with CLSM. (a) Keratinocytes cultured in low-calcium concentration were labeled for the NC3 domain of type XIII collagen (red) and vinculin (green). CLSM analysis showed colocalization (yellow) in the focal contacts. (b) Also talin co-localized with type XIII collagen in focal contacts. Scale bars: 5 μm. Journal of Investigative Dermatology 1999 113, 635-642DOI: (10.1046/j.1523-1747.1999.00736.x) Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions

Figure 6 Type XIII collagen, E-cadherin, vinculin, and α-catenin co-localize in cell–cell contacts of cultured keratinocytes. (a) CLSM visualization of the basal surface of keratinocytes cultured in high-calcium medium revealed marked colocalization (yellow) of type XIII collagen (red) and E-cadherin (green) at the cell–cell borders. (b) Type XIII collagen and vinculin showed partial colocalization in cell–cell contacts. (c) Type XIII collagen and α-catenin co-localized also in keratinocyte cell–cell borders. Scale bars: (a, b) 10 μm; (c) 5 μm. Journal of Investigative Dermatology 1999 113, 635-642DOI: (10.1046/j.1523-1747.1999.00736.x) Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions

Figure 7 Double immunolabeling suggests distinct subcellular locations for type XIII collagen and desmosomal proteins in cultured keratinocytes. Double immunofluorescence labeling for the NC1 domain of type XIII collagen and desmoplakin. Parts (a) and (b) show a 0.5 μm optic section close to the basal surface of the cultured keratinocytes. CLSM revealed desmoplakin (a) but not type XIII collagen (b) in the cell–cell contacts. Parts (c) (desmoplakin) and (d) (type XIII collagen) show a 0.5 μm optic section 1.5 μm more apically compared with panels (a) and (b). Part (e) shows a combination picture of an enlarged area indicated by an arrow in frames (c) and (d); immunolocalization of type XIII collagen is shown by red, and desmoplakin by green. Scale bars: (a–d) 20 μm; (e) 1 μm. Journal of Investigative Dermatology 1999 113, 635-642DOI: (10.1046/j.1523-1747.1999.00736.x) Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions

Figure 8 Western blotting and reverse transcription-PCR demonstrate type XIII collagen protein and mRNA in cultured keratinocytes and epidermis. (A) Western blotting of keratinocyte lysates with antibody to the NC3 domain of type XIII collagen revealed a broad band with a size of 105–110 kDa. Lane 1, keratinocytes maintained in low calcium concentration at time-point 0 h. Lanes 2 and 4, cells cultured in low calcium concentration for 4 and 24 h, respectively. Lanes 3 and 5, cultures in high calcium concentration for 4 and 24 h, respectively. (B) Western blotting of proteins precipitated from keratinocyte culture medium (lanes 6–9). Samples were taken after 4 h incubation in low calcium medium (lane 6) or high calcium medium (lane 7). 24 h cultures in low (lane 8) and high calcium concentration (lane 9). Lane 10, sample from epidermis was prepared by heat separation. (C) Total RNA was isolated from adult and fetal skin and epidermis. Single-stranded cDNA was synthesized by reverse transcriptase and PCR was performed as described in Materials and Methods. The panel shows amplification products of the reverse transcription-PCR reactions fractionated on 4% agarose gels and stained with ethidium bromide. Two left lanes represent adult whole skin samples, two middle lanes epidermal and two right lanes fetal skin samples. Each cDNA was amplified using oligonucleotide primer pairs for either the COL1 sequences or NC2 sequences. PCR amplification of the COL1 sequences revealed six DNA fragments representing type XIII collagen mRNA sequences. The identification was based on the migration position of the bands and previous characterization of the splice variants by DNA sequencing. The sizes in nucleotides and splice variants of the exons 3B, 4A, 4B, and 5 are indicated on the left and those of the exons 12 and 13 are shown on the right. Journal of Investigative Dermatology 1999 113, 635-642DOI: (10.1046/j.1523-1747.1999.00736.x) Copyright © 1999 The Society for Investigative Dermatology, Inc Terms and Conditions