Collider Ring Optics & Related Issues

Slides:



Advertisements
Similar presentations
Ion Polarization Control in MEIC Rings Using Small Magnetic Fields Integrals. PSTP 13 V.S. Morozov et al., Ion Polarization Control in MEIC Rings Using.
Advertisements

Update of 3.2 km ILC DR design (DMC3) Dou Wang, Jie Gao, Gang Xu, Yiwei Wang (IHEP) IWLC2010 Monday 18 October - Friday 22 October 2010 Geneva, Switzerland.
Operated by JSA for the U.S. Department of Energy Thomas Jefferson National Accelerator Facility EIC Collaboration Meeting, Hampton University, May 19-23,
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Chromaticity Correction & Dynamic Aperture in MEIC Ion Ring Fanglei Lin MEIC Detector and Interaction Region Designing Mini-Workshop, Oct. 31, 2011.
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
Polarization in ELIC Yaroslav Derbenev Center for Advanced Study of Accelerators Jefferson Laboratory EIC Collaboiration Meeting, January 10-12, 2010 Stony.
Interaction Region Design and Detector Integration V.S. Morozov for EIC Study Group at JLAB 2 nd Mini-Workshop on MEIC Interaction Region Design JLab,
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Analysis of Garren’s 27-Jul-2011 Hybrid Synchrotron Lattice J. Scott Berg Brookhaven National Laboratory Advanced Accelerator Group Meeting February 2,
Optics considerations for PS2 October 4 th, 2007 CARE-HHH-APD BEAM’07 W. Bartmann, M. Benedikt, C. Carli, B. Goddard, S. Hancock, J.M. Jowett, A. Koschik,
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
Layout and Arcs lattice design A. Chancé, B. Dalena, J. Payet, CEA R. Alemany, B. Holzer, D. Schulte CERN.
Optimization of the Collider rings’ optics
JLEIC Electron Collider Ring Design and Polarization
J-PARC main ring lattice An overview
Ion Collider Ring: Design and Polarization
Deuteron Polarization in MEIC
Large Booster and Collider Ring
Non-linear Beam Dynamics Studies for JLEIC Electron Collider Ring
First Look at Nonlinear Dynamics in the Electron Collider Ring
Jeffrey Eldred, Sasha Valishev
Electron collider ring Chromaticity Compensation and dynamic aperture
Electron Ring Optics Design
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Progress of SPPC lattice design
LHC (SSC) Byung Yunn CASA.
ILC 3.2 km DR design based on FODO lattice (DMC3)
ILC 3.2 km DR design based on FODO lattice (DMC3)
Negative Momentum Compaction lattice options for PS2
Comparison of NMC rings for PS2
Accelerator and Interaction Region
PS2 meeting NMC lattice for PS2 Y. Papaphilippou September 28th, 2007.
Towards an NMC Ring: Dispersion suppressor & long straight section
Optics considerations for PS2
Update on Alternative Design of jleic ion injector Complex B
Negative Momentum Compaction lattice options for PS2
Towards an NMC Ring: Dispersion suppressor & long straight section
Vertical Dogleg Options for the Ion Collider Ring
JLEIC Collider Rings’ Geometry Options
Progress on Non-linear Beam Dynamic Study
Feasibility of Reusing PEP-II Hardware for MEIC Electron Ring
Fanglei Lin, Andrew Hutton, Vasiliy S. Morozov, Yuhong Zhang
Update on MEIC Nonlinear Dynamics Work
Main Design Parameters RHIC Magnets for MEIC Ion Collider Ring
The MEIC electron ring as the large ion booster
Ion Collider Ring Using Superferric Magnets
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Status and plans for crab crossing studies at JLEIC
Alternative Ion Injector Design
Fanglei Lin, Yuri Nosochkov Vasiliy Morozov, Yuhong Zhang, Guohui Wei
Update on JLEIC Electron Ring Design
Conventional Synchronization Schemes
Fanglei Lin MEIC R&D Meeting, JLab, July 16, 2015
JLEIC Collider Rings’ Geometry Options (II)
Progress Update on the Electron Polarization Study in the JLEIC
MEIC New Baseline: Performance and Accelerator R&D
MEIC Alternative Design Part V
Possibility of MEIC Arc Cell Using PEP-II Dipole
More on MEIC Beam Synchronization
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Arc FODO Cell Inventory
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC R&D Meeting, JLab, August 20, 2014
MEIC Alternative Design Part III
A TME-like Lattice for DA Studies
Booster to Ion Ring Transfer Line
An Alternative Ion Complex Agenda /some preliminary estimations/
3.2 km FODO lattice for 10 Hz operation (DMC4)
MOPRB098 An Increased Extraction Energy Booster Complex For The Jefferson Lab Electron Ion Collider* Thomas Jefferson National Accelerator Facility Newport.
Presentation transcript:

Collider Ring Optics & Related Issues Vasiliy Morozov for the JLab EIC Study Group

MEIC Layout Prebooster 0.2GeV/c  3-5 GeV/c protons Big booster 3-5GeV/c  up to 20 GeV/c protons 3 Figure-8 rings stacked vertically

Big Booster Acceleration of protons from 3-5 GeV/c to up to 20 GeV/c for injection into ion collider ring Big booster implementation options Separate warm ring in collider rings’ tunnel (current baseline) Using the electron ring Separate cold ring in the prebooster’s tunnel Big booster design considerations Avoid transition energy crossing Space charge  higher injection energy for larger ring Matching RF systems  debunch low-frequency beam and then rebunch it at higher frequency?

Ion Collider Ring Layout Geometrical matching of electron and ion rings Spin rotators in the electron ring Siberian snakes in the proton ring arcs Siberian snake Ion Ring Electron Ring Spin rotators

Modular Design Concept Design separately and incorporate/match into the ring Vertical chicanes for stacking the ion ring arcs on top of the electron ring Injection section Electron cooling section Siberian snakes Interaction region with horizontal crossing Section for local chromaticity compensation

Adjusting quad strengths Basic Ring Parameters Proton beam momentum GeV/c 60 Circumference m 1041.11 Arc’s net bend deg 240 Straights’ crossing angle Arc length 300.5 Arc average radius 71.74 Straight section length 220.06 Lattice basic cell FODO Arc / straight FODO cell length 9 / 6.16 Nominal phase advance per cell x / y 90 / 90 Number of arc / straight FODO cells 54 / 68 Dispersion suppression Adjusting quad strengths

Magnet Parameters Proton beam momentum GeV/c 60 Number of dipoles 108 Dipole length m 3 Bending radius 38.7 Bending angle deg 4.4 Bending field T 5.2 Number of quads 288 Quad length 0.5 Quad strength in arc / straight FODO cells T/m 130 / 195

Arc FODO Cell /2 betatron phase advance in both planes Magnet parameters for 60 GeV/c protons: Dipoles: length = 3 m bending radius = 38.7 m bending angle = 4.4 bending field = 5.2 T Quads: length = 0.5 m strength = 130 T/m

Dispersion Suppressor Quads in 3 FODO cells varied to suppress dispersion while keeping -functions from growing Maximum quad strength at 60 GeV/c = 148 T/m

Short Straight for Siberian Snake Symmetric quad arrangement Initial  values from the dispersion suppressor Quads varied to obtain x,y = 0 in the middle at limited max Maximum quad strength at 60 GeV/c = 130 T/m

Arc End with Dispersion Suppression Indicated quads varied to suppress dispersion with limitations on max and Dmax Maximum quad strength at 60 GeV/c = 212 T/m Varied quads Regular FODO To straight section

Complete Arc Length = 300.5 m, net bend = 240, average radius = 72 m

Straight FODO Cell /2 betatron phase advance in both planes Drift length chosen to close the ring’s geometry Quad strength at 60 GeV/c = 195 T/m

Arc to Straight Matching Section Four quads in two FODO cells adjusted to match ’s and ’s from arcs to straight’s standard FODO cell Maximum quad strength at 60 GeV/c = 222 T/m

Complete Figure-8 Ring Total length = 1041 m

Figure-8 Ring Layout 100 m

Summary of Optics Parameters Proton beam momentum GeV/c 60 Circumference m 1041.11 Arc’s net bend deg 240 Straights’ crossing angle Arc length 300.5 Straight section length 220.06 Maximum horizontal / vertical  functions 20.8 / 20.8 Maximum horizontal dispersion Dx 2.01 Horizontal / vertical betatron tunes x,y 33.(03) / 33. (16) Horizontal / vertical chromaticitiesx,y -43.31 / -43.01 Momentum compaction factor  4.7 10-3 Transition energy tr 14.58 Horizontal / vertical normalized emittance x,y µm rad 0.35 / 0.07 At 20 GeV/c injection: Maximum horizontal / vertical rms beam size x,y 15* horizontal / vertical beam stay clear mm 4 / 4 2 / 2 30 / 30