The neutrino mass hierarchy and supernova n

Slides:



Advertisements
Similar presentations
Collective oscillations of SN neutrinos :: A three-flavor course :: Amol Dighe Tata Institute of Fundamental Research, Mumbai Melbourne Neutrino Theory.
Advertisements

A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Institute for Nuclear Research, RAS, Moscow, Russia.
The Role of Neutrinos in Astrophysics A.B. Balantekin University of Wisconsin GDR Neutrino Laboratoire Astroparticule et Cosmologie.
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany TAUP 2007, September 2007, Sendai, Japan Collective Flavor Oscillations Georg Raffelt,
Neutrino oscillations in oxygen-neon-magnesium supernovae Cecilia Lunardini Arizona State University And RIKEN-BNL Research Center C.L., B. Mueller and.
The effect of turbulence upon supernova neutrinos Jim Kneller NC State University NOW 2010.
Georg Raffelt, MPI Physics, Munich Neutrinos at the Forefront, Univ. de Lyon, 22–24 Oct 2012 Supernova Neutrinos Physics Opportunities with Supernova Neutrinos.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
The evolution and collapse of BH forming stars Chris Fryer (LANL/UA)  Formation scenarios – If we form them, they will form BHs.  Stellar evolution:
Physics Opportunities with
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Prospect for detection of supernova neutrino NOW2014 Sep. 9 th, 2014 Otranto, Lecce, Italy 森俊彰 Takaaki Mori for the Super-Kamiokande Collaboration Okayama.
Damping of neutrino flavor conversion in the wake of the supernova shock wave by G.L. Fogli, E. Lisi, D. Montanino, A. Mirizzi Based on hep-ph/ :
Neutron Star Formation and the Supernova Engine Bounce Masses Mass at Explosion Fallback.
1 Detecting Supernova Neutrinos X.-H. Guo Beijing Normal University.
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
Melbourne Neutrino Theory Workshop, June ROLE OF DENSE MATTER IN COLLECTIVE NEUTRINO TRANSFORMATIONS Sergio Pastor (IFIC Valencia) in collaboration.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Günter Sigl, Astroparticules et Cosmologie, ParisILIAS/N5-N6 meeting, Paris, January 23-24, 2006  Supernovae as neutrino and gravitational wave sources.
Neutrinos – Ghost Particles of the Universe
SUPERNOVA NEUTRINOS AT ICARUS
TAUP2007 Sep , 2007 Sendai, Japan Shiou KAWAGOE The Graduate University for Advanced Studies (SOKENDAI) / NAOJ JSPS Research Fellow T. Kajino, The.
Gravitational waves and neutrino emission from the merger of binary neutron stars Kenta Kiuchi Collaboration with Y. Sekiguchi, K. Kyutoku, M. Shibata.
Heidelberg, 9-12 November 2009 LAUNCH 09 Physics and astrophysics of SN neutrinos: What could we learn ? Alessandro MIRIZZI (Hamburg Universität)
Cristina VOLPE (Institut de Physique Nucléaire Orsay, France) Challenges in neutrino (astro)physics.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
Coincident search for gravitational-wave and neutrino signals from core-collapse supernovae L. Cadonati (U Mass, Amherst), E. Coccia (LNGS and U Rome II),
SNO and the new SNOLAB SNO: Heavy Water Phase Complete Status of SNOLAB Future experiments at SNOLAB: (Dark Matter, Double beta, Solar, geo-, supernova.
Constraining Neutrino Mass Hierarchy and θ 13 with Supernova Neutrino Data Stan Yen SNOLAB EAC August 2009.
Core-collapse supernova neutrinos, neutrino properties and… CP violation Cristina VOLPE (Institut de Physique Nucléaire Orsay, FRANCE)
Georg Raffelt, MPI Physics, Munich17 th Lomonosov Conference, Moscow, 20–26 Aug 2015 Supernova Neutrinos Нейтрино от сверхновые Georg Raffelt, 17 th Lomonosov.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Georg Raffelt, Max-Planck-Institut für Physik, München LowNu 2009, Oct 2009, Reims, France Crab Nebula Neutrino Champagne, LowNu2009, 19  21 Oct.
Basudeb Dasgupta, JIGSAW 2007 Mumbai Phase Effects in Neutrinos Conversions at a Supernova Shockwave Basudeb Dasgupta TIFR, Mumbai Joint Indo-German School.
Supernovae: BeyondDC-Phase 1 Some remarks on supernovae Detection principle – Absorption lengths – Effective volumes – Noise Supernova dynamics & fundamental.
Cristina VOLPE (AstroParticule et Cosmologie -APC) Open issues in neutrino flavor conversion in media.
Rencontres de Moriond, March 2010 Electroweak Interactions and Unified Theories Neutrinos from Supernovae Basudeb Dasgupta Max Planck Institute for.
MULTIMESSENGER ASTRONOMY GSSI, November 2015, L’Aquila Giulia Pagliaroli
Waseda univ. Yamada lab. D1 Chinami Kato
Supernova Neutrinos Physics Opportunities with Flavor Oscillations
Core-Collapse Supernovae and Supernova Relic Neutrinos
n Recent advances in neutrino (astro)physics Cristina VOLPE
Astrophysical Constraints on Secret Neutrino Interactions
Jonathan Davis King’s College London
(Xin-Heng Guo, Bing-Lin Young) Beijing Normal University
The Diffuse Flux of Supernova Neutrinos
MEMPHYS non-oscillation physics
SOLAR ATMOSPHERE NEUTRINOS
International School of Nuclear Physics 39th Course, Erice-Sicily, Sep
Neutrino astronomy Measuring the Sun’s Core
neutrino flavor conversion in media
Solar & Supernova Neutrinos Detection Methods and Prospects
n Low energy neutrino scattering: from nuclear physics
Rebecca Surman Union College
Neutrino Astrophysics
Non-Standard Interactions and Neutrino Oscillations in Core-Collapse Supernovae Brandon Shapiro.
Gravitational SIGNATURE of Core-Collapse Supernovae
SOLAR ATMOSPHERE NEUTRINOS
(Institut de Physique Nucléaire Orsay, France)
Solar Neutrino Problem
Neutrinos as probes of ultra-high energy astrophysical phenomena
Davide Franco for the Borexino Collaboration Milano University & INFN
Feasibility of geochemical galactic neutrino flux measurement
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

The neutrino mass hierarchy and supernova n Cristina VOLPE (AstroParticule et Cosmologie -APC)

Core-collapse supernovae Massive stars (M > 6-8 Msun) emit 1057 neutrinos in 10 seconds, during the gravitational collapse and cooling of the neutron star. Neutrino fluxes encode imprints of the explosion. cooling accretion Time after bounce (s) Hüdepohl et al. PRL 104 (2010) Supernova n fluxes from simulations NS ne nt nm ne nt nm NS

Supernova observations Time and energy signal from a supernova explosion. In our galaxy, 1-3 events/century; one explosion/year at 4 Mpc. The Diffuse Supernova Neutrino Background (DSNB) : The SN fluxes integrated over cosmological redshift. Solar abundance of heavy elements Element nucleosynthesis (r-process, np-process, n-nucleosynthesis). log Y(A) with n-n A Duan, Friedland, McLaughlin, Surman JPG 38 (2010)

SN1987A et SN simulations SN1987A events Star radius (km) Time (ms) A. Suzuki, J. of Physics, Conf. (2008) SN1987A events (LMC, 50 kpc) see e.g. Pagliaroli et al, Astropart. Phys. 31 (2009) SN simulations have reached a high degree of complexity : 2D-3D, convection, realistic neutrino transport, SASI. Marek & Janka, ApJ (2009) Star radius (km) Time (ms)

n flavour conversion in supernovae nm ne neutrinosphere shock waves n-e (MSW) the n interaction with matter – MSW effect – and with n . dynamical aspects - shock waves and turbulence. Numerous aspects require investigation. In fact, flavour conversion effects arise because of Novel conversion phenomena discovered in the last years.

The MSW effect ne Hmatter GF re =ne n2 =nm n1 e Neutrino interaction with matter induces a resonant flavour conversion. Wolfenstein PRD (1978) Mikheev and Smirnov, Sov. J. Nucl. Phys. (1985) n2 n1 MSW resonance location Effective mass matter basis =ne =nm high density flavour basis vacuum detection on earth DENSITY

The MSW effect : established Borexino coll, PRL 108 (2012) n e Survival Probability Neutrino Energy (MeV) pep pp MSW solution 7Be n 8B n the beautiful explanation of the « solar neutrino deficit » problem !

The MSW in supernovae The MSW effect is encountered twice : Dighe, Smirnov, PRD62 (2000) n-fluxes at the neutrinosphere Effective mass detection on earth DENSITY vacuum Low r High r SN core FLAVOUR CONVERSION at the H-RESONANCE DEPENDS ON THE NEUTRINO MASS HIERARCHY - either n or anti-n.

Distance in the star (a.u.) The MSW in supernovae At MSW resonance(s) efficient (adiabatic) conversion depends on : star density profile neutrino energy mixing angles, Dm2 sign Distance in the star (a.u.) n e Survival Probability full conversion (adiabatic) no conversion (non-adiabatic) ne -> nm ne -> ne Well understood.

depending on the hierarchy. The shock wave effects Dasgupta and Dighe, PRD 75 (2007). Kneller, McLaughlin, Brockman, PRD 77 (2008). Profile with shock waves Neutrino conversion in MSW region non-adiabatic t=1s t=1.5s density (g/cm3) anti-n e Survival Prob. inverted hierarchy E=20 MeV adiabatic distance in SN (cm) Time (s) before the shock - adiabatic conversion It occurs either in ne or in anti-ne channel depending on the hierarchy. the shock arrives - non-adiabatic multiple MSW (phase effects) the shock has gone

Turbulence effects Potential (a.u.) distance in SN (cm) Kneller and Volpe, PRD 82 (2010) Profile with turbulence Matter density fluctuations induce multiple MSW resonances and phase effects. Potential (a.u.) distance in SN (cm) Same imprint as shock waves

The impact of the n-n interaction Neutrino conversion near the neutrinosphere Spectral-split Neutrino Fluxes Neutrino Energy (MeV) n-fluxes after 200 km Distance in SN n e Survival Probability 1- 2- 3- all neutrinos stick together - synchronization instability in flavour - bipolar regime Duan,Fuller,Qian PRD74 (2006) 76 (2007), Hannestad, et al. PRD 74 (2006), Galais, Kneller, Volpe JPG 39 (2012) full or no conversion depending on energy - spectral split Duan, Fuller, Qian, PRD76(2007); Meng and Qian, PRD (2011); Raffelt and Smirnov PRD 76 and PRL (2007); Pehlivan et al, PRD 84 (2011); Galais and Volpe, PRD 84 (2011)

The impact of the n-n interaction Large matter densities appear to suppress n-n effects during the accretion phase. Further work is needed to test some of the approximations, either geometrical or inherent to the equations commonly used, such as the mean-field approximation. see e.g. Chakraborty, et al. PRL 107 (2011) Cherry et al, PRL 108 (2012) Volpe, Vaenaeaenen, Espinoza, 1302.2374 n-anti-n pairing correlations

Current SN observatories Borexino Baksan SK (104) LVD HALO Daya-Bay MiniBOONE KamLAND (400) IceCube (106) Different detection channels available : scattering of anti-ne with p, ne with nuclei, nx with e, p

The Diffuse Supernova n Background Calculation that treats both the n-n and shock wave effects : Malek et al. PRL (2003) NH IH 928 862 MEMPHYS (440 kton) 106 99 GLACIER (100 kton) 105 98 LENA (50 kton) Events/y/22.5 kton/4 MeV Neutrino Energy (MeV) Galais, Kneller, Gava, Volpe, PRD 81 (2010) Upper limits on DSNB fluxes : 1.4-1.9 anti-ne /cm2/s 73-154 ne/cm2/s THE HIERARCHY effect small. Lunardini and Peres, JCAP (2008) Difficult to have unambiguous information seen astrophysical uncertainties (star formation rate).

n mass hierarchy with SN n The mass hierarchy signatures studied so far are roughly of three kinds. They exploit : either earth matter effects with one or two-detectors ; or the early time signal ; or the full time and energy signal of the explosion.

Predictions for the time rise From the early time signal SN n fluxes at accretion phase Predictions for the time rise in Icecube The hierarchy appear to be distinguishable. Serpico, Chakraborty, Fischer, Hudepohl, Janka, Mirizzi, PRD 85 (2012).

From late time and energy signal ne + p n + e+ Time signal (s) Prediction including the n-n interaction and shock wave effects. inverted hierarchy e+ flux (/MeV/s/ton) 29 MeV ON EARTH adiabatic non-adiabatic anti-n e fluxes Energy (MeV) 15 MeV 15 MeV 29 MeV Gava, Kneller, Volpe, McLaughlin, PRL 103 (2009) . Bump (dip) at 3.5 (1) sigma in Super-Kamiokande if a supernova at 10 kpc explodes...

Combining information Vaeaenaenen, Volpe, JCAP 1110 (2011) . (CC+NC) events in HALO-2 (1 kton lead) for a SN at 10 kpc Predictions include nn and n-matter interaction Two-neutron events One-neutron events Detection channels with different energy thresholds allow to identify solutions.

Conclusions Simulations of core-collapse supernovae and of neutrino flavour conversion in supernovae are steadily progressing. Several features established but various aspects needs further studies. For the mass hierarchy : - the effect in the DSNB too small to be disentagled from astrophysical uncertainties; - the measurement of the early time rise and late time and energy signal in water Cherenkov or scintillator detectors are promising.

Danke. Gracias Thank you Grazie Life tree Merci

Core-collapse supernovae Massive stars (M > 8 Msun) emit 1057 neutrinos in 10 seconds, during the gravitational collapse and cooling of the neutron star. Hüdepohl et al.PRL 2010. Neutrino fluxes encode imprints of the explosion. NS ne nt nm ne nt nm NS