Santosh K. Dasika, Kalyan C. Vinnakota, Daniel A. Beard 

Slides:



Advertisements
Similar presentations
Inhibitor Binding Increases the Mechanical Stability of Staphylococcal Nuclease Chien-Chung Wang, Tian-Yow Tsong, Yau-Heiu Hsu, Piotr E. Marszalek Biophysical.
Advertisements

Lever-Arm Mechanics of Processive Myosins Yujie Sun, Yale E. Goldman Biophysical Journal Volume 101, Issue 1, Pages 1-11 (July 2011) DOI: /j.bpj
Binding Thermodynamics of Ferredoxin:NADP+ Reductase: Two Different Protein Substrates and One Energetics  Marta Martínez-Júlvez, Milagros Medina, Adrián.
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Volume 77, Issue 2, Pages (August 1999)
Kinetic Hysteresis in Collagen Folding
A Link between Hinge-Bending Domain Motions and the Temperature Dependence of Catalysis in 3-Isopropylmalate Dehydrogenase  István Hajdú, András Szilágyi,
Nickolay Zhadin, Miriam Gulotta, Robert Callender  Biophysical Journal 
Ranjan K. Pradhan, Daniel A. Beard, Ranjan K. Dash  Biophysical Journal 
Volume 96, Issue 6, Pages (March 2009)
Precipitation of DNA by Polyamines: A Polyelectrolyte Behavior
Kinetic Studies on Enzyme-Catalyzed Reactions: Oxidation of Glucose, Decomposition of Hydrogen Peroxide and Their Combination  Zhimin Tao, Ryan A. Raffel,
Kinetic Analysis of High Affinity Forms of Interleukin (IL)-13 Receptors: Suppression of IL-13 Binding by IL-2 Receptor γ Chain  Vladimir A. Kuznetsov,
María del Rocío Cantero, Horacio F. Cantiello  Biophysical Journal 
Volume 109, Issue 11, Pages (December 2015)
Volume 113, Issue 12, Pages (December 2017)
Volume 86, Issue 1, Pages (January 2004)
Ranjan K. Dash, Feng Qi, Daniel A. Beard  Biophysical Journal 
Volume 91, Issue 10, Pages (November 2006)
Volume 101, Issue 2, Pages (July 2011)
Jérôme Lang, Amandine Maréchal, Manon Couture, Jérôme Santolini 
Megan T. Valentine, Steven M. Block  Biophysical Journal 
Volume 98, Issue 11, Pages (June 2010)
Volume 86, Issue 4, Pages (April 2004)
Michał Komorowski, Jacek Miękisz, Michael P.H. Stumpf 
Static Light Scattering From Concentrated Protein Solutions II: Experimental Test of Theory for Protein Mixtures and Weakly Self-Associating Proteins 
On the Distribution of Protein Refractive Index Increments
Factor Xa Binding to Phosphatidylserine-Containing Membranes Produces an Inactive Membrane-Bound Dimer  Tilen Koklic, Rinku Majumder, Gabriel E. Weinreb,
Volume 103, Issue 4, Pages (August 2012)
Shu-Chun Cheng, Gu-Gang Chang, Chi-Yuan Chou  Biophysical Journal 
Juan G. Restrepo, James N. Weiss, Alain Karma  Biophysical Journal 
Volume 74, Issue 5, Pages (May 1998)
Kenneth Tran, Nicolas P. Smith, Denis S. Loiselle, Edmund J. Crampin 
Francis D. Appling, Aaron L. Lucius, David A. Schneider 
Yasunori Aizawa, Qing Xiang, Alan M. Lambowitz, Anna Marie Pyle 
The Thermodynamic Meaning of Metabolic Exchange Fluxes
Colocalization of Multiple DNA Loci: A Physical Mechanism
Protein Fibrillation Lag Times During Kinetic Inhibition
Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Volume 99, Issue 1, Pages (July 2010)
Kinetic Hysteresis in Collagen Folding
Jiang Hong, Shangqin Xiong  Biophysical Journal 
Volume 105, Issue 1, Pages (July 2013)
Volume 101, Issue 4, Pages (August 2011)
Blockers of VacA Provide Insights into the Structure of the Pore
Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus- Based Nanocoating  Alejandro Valbuena, Mauricio G. Mateu  Biophysical.
Biophysical Characterization of Styryl Dye-Membrane Interactions
A Flexible Approach to the Calculation of Resonance Energy Transfer Efficiency between Multiple Donors and Acceptors in Complex Geometries  Ben Corry,
Rikiya Watanabe, Makoto Genda, Yasuyuki Kato-Yamada, Hiroyuki Noji 
Ranjan K. Dash, Feng Qi, Daniel A. Beard  Biophysical Journal 
Binding-Linked Protonation of a DNA Minor-Groove Agent
Hao Yuan Kueh, Philipp Niethammer, Timothy J. Mitchison 
Rinat Nahum-Levy, Dafna Lipinski, Sara Shavit, Morris Benveniste 
Jing Chen, John Neu, Makoto Miyata, George Oster  Biophysical Journal 
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Jason N. Bazil, Daniel A. Beard, Kalyan C. Vinnakota 
Mechanical Coupling between Myosin Molecules Causes Differences between Ensemble and Single-Molecule Measurements  Sam Walcott, David M. Warshaw, Edward P.
Volume 84, Issue 4, Pages (April 2003)
Mathematical Modeling of Mitochondrial Adenine Nucleotide Translocase
Small Peptide Binding Stiffens the Ubiquitin-like Protein SUMO1
Probing the Dynamics of Clot-Bound Thrombin at Venous Shear Rates
S. Rüdiger, Ch. Nagaiah, G. Warnecke, J.W. Shuai  Biophysical Journal 
Volume 114, Issue 6, Pages (March 2018)
Effect of Anions on the Binding and Oxidation of Divalent Manganese and Iron in Modified Bacterial Reaction Centers  Kai Tang, JoAnn C. Williams, James.
Volume 98, Issue 7, Pages (April 2010)
Volume 99, Issue 1, Pages (July 2010)
Torque Transmission Mechanism via DELSEED Loop of F1-ATPase
Barrier Compression and Its Contribution to Both Classical and Quantum Mechanical Aspects of Enzyme Catalysis  Sam Hay, Linus O. Johannissen, Michael.
Presentation transcript:

Determination of the Catalytic Mechanism for Mitochondrial Malate Dehydrogenase  Santosh K. Dasika, Kalyan C. Vinnakota, Daniel A. Beard  Biophysical Journal  Volume 108, Issue 2, Pages 408-419 (January 2015) DOI: 10.1016/j.bpj.2014.11.3467 Copyright © 2015 Biophysical Society Terms and Conditions

Figure 1 Schematics. (A) Simple ordered bi-bi model; the k¯i values represent the apparent rate constants. (B) Theorell-Chance mechanism. (C) pH dependency of NADH oxidation proposed by Raval and Wolfe (29). (D) pH dependency of NAD reduction proposed by Raval and Wolfe (29). (E) Proposed pH model that assumes NAD/NADH binding to all enzyme-protonated states. (Dashed lines) Steps for which parameters are not identifiable. (F) Schematic of the proposed model, including multiple pH-dependent ionic states. In each of these schemes, A, B, P, and Q represent NAD, MAL, OAA, and NADH, respectively, and the substrate binding or product release is represented by the direction of the arrow. The diagram uses the convention of explicitly showing association steps for binding of forward-reaction substrates A and B, and dissociation steps for unbinding of products P and Q. In the reverse operation, for example in the step from EA to E in panel A, the reactant A dissociates, even though dissociation of A is not explicitly illustrated in the figure. Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 2 Progress curves of [NADH] versus time for reverse reaction (direction of NADH oxidation) at various pH values without product inhibitors present in initial buffer. Initial conditions are [NADH]0 = 300 μM and (A) [OAA]0 = 50 μM, pH 6.5; (B) [OAA]0 = 100 μM, pH 6.5; (C) [OAA]0 = 50 μM, pH 7.0; (D) [OAA]0 = 100 μM, pH 7.0; (E) [OAA]0 = 50 μM, pH 7.5; (F) [OAA]0 = 100 μM, pH 7.5; (G) [OAA]0 = 50 μM, pH 8.0; (H) [OAA]0 = 100 μM, pH 8.0; (I) [OAA]0 = 50 μM, pH 8.5; (J) [OAA]0 = 100 μM pH 8.5; (K) [OAA]0 = 50 μM, pH 9.0; and (L) [OAA]0 = 100 μM, pH 9.0. (In each plot the shaded lines and solid lines, respectively, represent mean with standard deviation of experimentally measured [NADH], and [NADH] obtained from fitting data to ordered bi-bi mechanism.) Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 3 Progress curves of [NADH] versus time for forward reaction (direction of NAD reduction) at various pH values without product inhibitors present in initial buffer. Initial conditions are [NAD]0 = 1 mM and (A) [MAL]0 = 10 mM, pH 6.5; (B) [MAL]0 = 20 mM, pH 6.5; (C) [MAL]0 = 5 mM, pH 7.0; (D) [MAL]0 = 10 mM, pH 7.0; (E) [MAL]0 = 5 mM, pH 7.5; (F) [MAL]0 = 10 mM, pH 7.5; (G) [MAL]0 = 1 mM, pH 8.0; (H) [MAL]0 = 2 mM, pH 8.0; (I) [MAL]0 = 1 mM, pH 8.5; (J) [MAL]0 = 2 mM, pH 8.5; (K) [MAL]0 = 0.5 mM, pH 9.0; and (L) [MAL]0 = 1 mM, pH 9.0. (In each plot the shaded lines and solid lines, respectively, represent mean with standard deviation of experimentally measured [NADH], and [NADH] obtained from fitting data to ordered bi-bi mechanism.) Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 4 Progress curves of [NADH] versus time for reverse reaction (direction of NADH oxidation) at various pH values with 1 mM NAD as product inhibitor present in initial buffer. Initial conditions are [NADH]0 = 300 μM and (A) [OAA]0 = 50 μM, pH 6.5; (B) [OAA]0 = 100 μM, pH 6.5; (C) [OAA]0 = 50 μM, pH 7.0; (D) [OAA]0 = 100 μM, pH 7.0; (E) [OAA]0 = 50 μM, pH 7.5; (F) [OAA]0 = 100 μM, pH 7.5; (G) [OAA]0 = 50 μM, pH 8.0; (H) [OAA]0 = 100 μM, pH 8.0; (I) [OAA]0 = 50 μM, pH 8.5; (J) [OAA]0 = 100 μM, pH 8.5; (K) [OAA]0 = 50 μM, pH 9.0; and (L) [OAA]0 = 100 μM, pH 9.0. (In each plot the shaded lines and solid lines, respectively, represent mean with standard deviation of experimentally measured [NADH], and [NADH] obtained from fitting data to ordered bi-bi mechanism.) Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 5 Progress curves of [NADH] versus time for reverse reaction (direction of NADH oxidation) at various pH values with 2 mM NAD as product inhibitor present in initial buffer. Initial conditions are [NADH]0 = 300 μM and (A) [OAA]0 = 50 μM, pH 6.5; (B) [OAA]0 = 100 μM, pH 6.5; (C) [OAA]0 = 50 μM, pH 7.0; (D) [OAA]0 = 100 μM, pH 7.0; (E) [OAA]0 = 50 μM, pH 7.5; (F) [OAA]0 = 100 μM, pH 7.5; (G) [OAA]0 = 50 μM, pH 8.0; (H) [OAA]0 = 100 μM, pH 8.0; (I) [OAA]0 = 50 μM, pH 8.5; (J) [OAA]0 = 100 μM, pH 8.5; (K) [OAA]0 = 50 μM, pH 9.0; and (L) [OAA]0 = 100 μM, pH 9.0. (In each plot the shaded lines and solid lines, respectively, represent mean with standard deviation of experimentally measured [NADH], and [NADH] obtained from fitting data to ordered bi-bi mechanism.) Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 6 Progress curves of [NADH] versus time for reverse reaction (direction of NADH oxidation) at various pH values with 1 mM MAL as product inhibitor present in initial buffer. Initial conditions are [NADH]0 = 300 μM and (A) [OAA]0 = 50 μM, pH 6.5; (B) [OAA]0 = 100 μM, pH 6.5; (C) [OAA]0 = 50 μM, pH 7.0; (D) [OAA]0 = 100 μM, pH 7.0; (E) [OAA]0 = 50 μM, pH 7.5; (F) [OAA]0 = 100 μM, pH 7.5; (G) [OAA]0 = 50 μM, pH 8.0; (H) [OAA]0 = 100 μM, pH 8.0; (I) [OAA]0 = 50 μM, pH 8.5; (J) [OAA]0 = 100 μM, pH 8.5; (K) [OAA]0 = 50 μM, pH 9.0; and (L) [OAA]0 = 100 μM, pH 9.0. (In each plot the shaded lines and solid lines, respectively, represent mean with standard deviation of experimentally measured [NADH], and [NADH] obtained from fitting data to ordered bi-bi mechanism.) Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 7 Progress curves of [NADH] versus time for reverse reaction (direction of NADH oxidation) at various pH values with 2 mM MAL as product inhibitor present in initial buffer. Initial conditions are [NADH]0 = 300 μM and (A) [OAA]0 = 50 μM, pH 6.5; (B) [OAA]0 = 100 μM, pH 6.5; (C) [OAA]0 = 50 μM, pH 7.0; (D) [OAA]0 = 100 μM, pH 7.0; (E) [OAA]0 = 50 μM, pH 7.5; (F) [OAA]0 = 100 μM, pH 7.5; (G) [OAA]0 = 50 μM, pH 8.0; (H) [OAA]0 = 100 μM, pH 8.0; (I) [OAA]0 = 50 μM, pH 8.5; (J) [OAA]0 = 100 μM, pH 8.5; (K) [OAA]0 = 50 μM, pH 9.0; and (L) [OAA]0 = 100 μM, pH 9.0. (In each plot the shaded lines and solid lines, respectively, represent mean with standard deviation of experimentally measured [NADH], and [NADH] obtained from fitting data to ordered bi-bi mechanism.) Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 8 Molecular activity as a function of pH. Experimental data from this study (open circles) are plotted along with experimental data from Raval and Wolfe (29) (open triangles) obtained under identical experimental conditions: [NADH] = 10 μM and [OAA] = 10 μM. Model predictions (Fig. 1 F) are plotted (solid line). The model predicts a peak at low pH (pH ∼6), contradicting the experimental data observations. Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions

Figure 9 Progress of NADH oxidation for initial conditions [NADH] = 10 μM and [OAA] = 10 μM with high (100 IU/mL stock solution) and low (10 IU/mL stock solution) enzyme concentration for pH: (A) 6.5, (B) 7.0, (C) 7.5, (D) 8.0, (E) 8.5, and (F) 9.0 (shaded lines represents data with low enzyme concentration (∼0.6 nM); solid lines represent data with high enzyme concentration (∼6 nM)). The time axis for the low enzyme concentration is indicated on the bottom of each plot; the time axis for the high enzyme concentration is indicated on the top of each plot. Biophysical Journal 2015 108, 408-419DOI: (10.1016/j.bpj.2014.11.3467) Copyright © 2015 Biophysical Society Terms and Conditions