Volume 25, Issue 18, Pages (September 2015)

Slides:



Advertisements
Similar presentations
Human Evolution: Turning Back the Clock
Advertisements

The Cilium Secretes Bioactive Ectosomes
Colponemids Represent Multiple Ancient Alveolate Lineages
Genome Evolution: Horizontal Movements in the Fungi
Lotte B. Pedersen, Stefan Geimer, Joel L. Rosenbaum  Current Biology 
CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation
Building the Centriole
Pericycle Current Biology
Phototransduction in fan worm radiolar eyes
Volume 14, Issue 9, Pages (May 2004)
Genome Evolution: Horizontal Movements in the Fungi
Volume 19, Issue 5, Pages (May 2011)
Capsaspora owczarzaki
Ancestral Protein Reconstruction Yields Insights into Adaptive Evolution of Binding Specificity in Solute-Binding Proteins  Ben E. Clifton, Colin J. Jackson 
Volume 25, Issue 24, Pages R1156-R1158 (December 2015)
Embracing Uncertainty in Reconstructing Early Animal Evolution
Volume 24, Issue 7, Pages (March 2014)
The hidden biology of sponges and ctenophores
Evolution: Revisiting the Root of the Eukaryote Tree
Volume 27, Issue 13, Pages e6 (July 2017)
Building the Centriole
Volume 22, Issue 12, Pages (June 2012)
Toward a Molecular Structure of the Eukaryotic Kinetochore
Volume 24, Issue 22, Pages (November 2014)
Volume 26, Issue 8, Pages (April 2016)
Volume 16, Issue 18, Pages (September 2006)
Volume 25, Issue 16, Pages (August 2015)
Tendon Cell Array Isolation Reveals a Previously Unknown Fibrillin-2-Containing Macromolecular Assembly  Timothy M. Ritty, Robyn Roth, John E. Heuser 
Volume 24, Issue 11, Pages (June 2014)
The Origin of Phragmoplast Asymmetry
Volume 25, Issue 11, Pages (June 2015)
Volume 25, Issue 16, Pages (August 2015)
Genomic Flatlining in the Endangered Island Fox
Males evolved from the dominant isogametic mating type
Volume 15, Issue 20, Pages (October 2005)
Gradual Assembly of Avian Body Plan Culminated in Rapid Rates of Evolution across the Dinosaur-Bird Transition  Stephen L. Brusatte, Graeme T. Lloyd,
Tera C. Levin, Nicole King  Current Biology 
Repeated colonization and hybridization in Lake Malawi cichlids
Cédric Finet, Ruth E. Timme, Charles F. Delwiche, Ferdinand Marlétaz 
A Eukaryote without a Mitochondrial Organelle
Immunofluorescence staining of respiratory cells.
Volume 39, Issue 2, Pages (October 2016)
Sophie Louvet-Vallée, Stéphanie Vinot, Bernard Maro  Current Biology 
Volume 16, Issue 15, Pages R577-R578 (August 2006)
Volume 21, Issue 4, Pages (February 2011)
P granules Current Biology
Volume 21, Issue 23, Pages (December 2011)
Volume 23, Issue 16, Pages (August 2013)
Pericycle Current Biology
Volume 24, Issue 15, Pages (August 2014)
Cetaceans on a Molecular Fast Track to Ultrasonic Hearing
Control of Centriole Length by CPAP and CP110
Volume 26, Issue 2, Pages (January 2016)
Volume 27, Issue 23, Pages e5 (December 2017)
A Modern Descendant of Early Green Algal Phagotrophs
Simon Laurin-Lemay, Henner Brinkmann, Hervé Philippe  Current Biology 
Evolution: Complex Multicellular Life with 5,500 Genes
Colponemids Represent Multiple Ancient Alveolate Lineages
Volume 23, Issue 17, Pages (September 2013)
Volume 24, Issue 10, Pages (September 2018)
David Vanneste, Masatoshi Takagi, Naoko Imamoto, Isabelle Vernos 
Volume 17, Issue 17, Pages (September 2007)
Fig. 2. —Phylogenetic relationships and motif compositions of some representative MORC genes in plants and animals. ... Fig. 2. —Phylogenetic relationships.
Rapid Evolution of the Cerebellum in Humans and Other Great Apes
Γ-Tubulin Functions in the Nucleation of a Discrete Subset of Microtubules in the Eukaryotic Flagellum  Paul G. McKean, Andrea Baines, Sue Vaughan, Keith.
Horizontal gene transfer and the evolution of cnidarian stinging cells
Paratrypanosoma Is a Novel Early-Branching Trypanosomatid
Basal bodies Current Biology
Evolution of the extinct Sabretooths and the American cheetah-like cat
Michael S.Y. Lee, Julien Soubrier, Gregory D. Edgecombe 
Presentation transcript:

Volume 25, Issue 18, Pages 2404-2410 (September 2015) Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi  Guifré Torruella, Alex de Mendoza, Xavier Grau-Bové, Meritxell Antó, Mark A. Chaplin, Javier del Campo, Laura Eme, Gregorio Pérez- Cordón, Christopher M. Whipps, Krista M. Nichols, Richard Paley, Andrew J. Roger, Ariadna Sitjà-Bobadilla, Stuart Donachie, Iñaki Ruiz- Trillo  Current Biology  Volume 25, Issue 18, Pages 2404-2410 (September 2015) DOI: 10.1016/j.cub.2015.07.053 Copyright © 2015 Elsevier Ltd Terms and Conditions

Current Biology 2015 25, 2404-2410DOI: (10.1016/j.cub.2015.07.053) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 1 Phylogeny and Cell Biology of Opisthokonts (A) Phylogenetic tree based on the 83-taxa matrix (see Tables S1 and S2 and Supplemental Experimental Procedures) and inferred by PhyloBayes under the CAT-Poisson model. Tree topology is the consensus of two Markov chain Monte Carlo chains run for 1,500 generations, saving every ten trees and after a burn-in of 25%. Split supports are posterior probabilities (pp) and nonparametric maximum likelihood (ML) bootstrap (bs) values obtained from 200 ML replicates using the LG+I+G model implemented in RAxML. Support values > 0.95 pp and > 95% bs are indicated by a bullet (•). The taxa sampled in this study are indicated in bold. For raw trees, see Figure S1. (B–E) Light micrographs showing the coenocytic stage of representative species of the tentatively named “Terestosporea” (Corallochytrium + Ichthyosporea) sequenced in this study, including Corallochytrium limacisporum (B), Sphaerothecum destruens (C; arrowhead indicates flagellated zoospore), Abeoforma whisleri (D), and Ichthyophonus hoferi (E). Scale bar represents 10 μm in (B)–(D) and 100 μm in (E). Current Biology 2015 25, 2404-2410DOI: (10.1016/j.cub.2015.07.053) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 2 Multiple Independent Losses of the Flagellar Toolkit and CHS Genes in Opisthokonta (A) Presence versus absence of key molecular components of the flagellar apparatus and chitin synthases (CHS) in distinct Opisthokonta lineages and taxa. apresent in oomycetes, Chlorella variabilis, and Paramecium tetraurelia; bpresent in Acanthamoeba castellanii; cpresent in Entamoeba histolytica and Thecamonas trahens; dpresent in Thalassiosira pseudonana; epresent in the chytrid Batrachochytrium dendrobatidis. (B) Components of the flagellar apparatus and names of the molecular complexes. Adapted from [24]. See flagellar gene distribution in Table S3. (C) Main chitin synthase classes and their canonical protein domain architectures (see CHS phylogeny in Figure S2). Current Biology 2015 25, 2404-2410DOI: (10.1016/j.cub.2015.07.053) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 3 Confocal and Electron Microscopy of Ministeria vibrans Flagellum (A and B) Confocal microscopy showing Ministeria vibrans ATCC 50519 stained with DAPI (blue) and anti-α-tubulin antibody 12G10 (Developmental Studies Hybridoma Bank) (green) (A) or with DAPI (blue), anti-acetylated-tubulin antibody T7451 (Sigma) (red), and phalloidin (green) (B). Arrowheads indicate the flagellar structure. Whereas the flagellar structure is specifically stained with cilia marker (acetylated tubulin) in (B), the cytoplasmic tubulin cytoskeleton is stained only with general anti-tubulin antibody in (A). M. vibrans feeds on bacteria, seen here as DAPI-stained bodies outside the cell. Scale bar represents 5 μm. See also Figure S3. (C) TEM micrograph showing a transverse section of the flagellar structure of M. vibrans. N, nucleus; F, flagellar structure; OM, outer microtubules; CM, central microtubules. Scale bar represents 200 nm. Current Biology 2015 25, 2404-2410DOI: (10.1016/j.cub.2015.07.053) Copyright © 2015 Elsevier Ltd Terms and Conditions

Figure 4 Evolution of Lifestyles and Some Cell Features of the Opisthokonts Opisthokonta cladogram displaying lifestyle characteristics such as feeding mode, flagellated stage, CHS repertoire, and developmental mode (see Figure S4 for wheat germ agglutinin [WGA] staining) and ancestral state reconstruction of the last opisthokont common ancestor (LOCA). Choanoflagellate image is adapted from http://www.dayel.com/ (CC BY-SA 3.0). Current Biology 2015 25, 2404-2410DOI: (10.1016/j.cub.2015.07.053) Copyright © 2015 Elsevier Ltd Terms and Conditions