Surface-Sensitive Raman Spectroscopy of Collagen I Fibrils

Slides:



Advertisements
Similar presentations
AFM-Raman and Tip Enhanced Raman studies of modern nanostructures Pavel Dorozhkin, Alexey Shchekin, Victor Bykov NT-MDT Co., Build. 167, Zelenograd Moscow,
Advertisements

Date of download: 6/25/2016 Copyright © 2016 SPIE. All rights reserved. Depiction of the confocal Raman system used to excite the embedded probes and collect.
Date of download: 11/9/2017 Copyright © ASME. All rights reserved.
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Volume 105, Issue 8, Pages (October 2013)
Volume 106, Issue 6, Pages (March 2014)
P.J. Caspers, G.W. Lucassen, G.J. Puppels  Biophysical Journal 
Quantitative Coherent Anti-Stokes Raman Scattering Imaging of Lipid Distribution in Coexisting Domains  Li Li, Haifeng Wang, Ji-Xin Cheng  Biophysical.
High-Density 3D Single Molecular Analysis Based on Compressed Sensing
3-D Particle Tracking in a Two-Photon Microscope: Application to the Study of Molecular Dynamics in Cells  Valeria Levi, QiaoQiao Ruan, Enrico Gratton 
Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy 
Conformation, Orientation, and Adsorption Kinetics of Dermaseptin B2 onto Synthetic Supports at Aqueous/Solid Interface  S. Noinville, F. Bruston, C.
Volume 74, Issue 6, Pages (June 1998)
Volume 107, Issue 10, Pages (November 2014)
Surface Characterization of Insulin Protofilaments and Fibril Polymorphs Using Tip- Enhanced Raman Spectroscopy (TERS)  Dmitry Kurouski, Tanja Deckert-Gaudig,
Volume 107, Issue 2, Pages (July 2014)
Volume 113, Issue 12, Pages (December 2017)
Rene B. Svensson, Hindrik Mulder, Vuokko Kovanen, S. Peter Magnusson 
Shear-Induced Unfolding of Lysozyme Monitored In Situ
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
Joseph M. Johnson, William J. Betz  Biophysical Journal 
Volume 104, Issue 10, Pages (May 2013)
Volume 95, Issue 7, Pages (October 2008)
Scanning Near-Field Fluorescence Resonance Energy Transfer Microscopy
Volume 107, Issue 2, Pages (July 2014)
Laurent Bozec, Marianne Odlyha  Biophysical Journal 
H.M. Seeger, G. Marino, A. Alessandrini, P. Facci  Biophysical Journal 
Carlos R. Baiz, Andrei Tokmakoff  Biophysical Journal 
L. Kreplak, J. Doucet, P. Dumas, F. Briki  Biophysical Journal 
Cell Optical Density and Molecular Composition Revealed by Simultaneous Multimodal Label-Free Imaging  Nicolas Pavillon, Alison J. Hobro, Nicholas I.
Structure of Supported Bilayers Composed of Lipopolysaccharides and Bacterial Phospholipids: Raft Formation and Implications for Bacterial Resistance 
Volume 90, Issue 2, Pages (January 2006)
Volume 75, Issue 2, Pages (August 1998)
Volume 107, Issue 10, Pages (November 2014)
Daichi Okuno, Masayoshi Nishiyama, Hiroyuki Noji  Biophysical Journal 
Andre F. Palmer, Philip Wingert, Jonathan Nickels  Biophysical Journal 
Structural Refinement of a Key Tryptophan Residue in the BLUF Photoreceptor AppA by Ultraviolet Resonance Raman Spectroscopy  Masashi Unno, Sadato Kikuchi,
Volume 104, Issue 1, Pages (January 2013)
Volume 106, Issue 2, Pages (January 2014)
Volume 91, Issue 7, Pages (October 2006)
Collagen fibril stiffening in osteoarthritic cartilage of human beings revealed by atomic force microscopy  C.-Y. Wen, C.-B. Wu, B. Tang, T. Wang, C.-H.
Volume 108, Issue 1, Pages 5-9 (January 2015)
Substrate Deformation Predicts Neuronal Growth Cone Advance
Collagen Fibrils: Nanoscale Ropes
Chang-Chun Lee, Yen Sun, Huey W. Huang  Biophysical Journal 
Volume 93, Issue 12, Pages (December 2007)
Topography and Mechanical Properties of Single Molecules of Type I Collagen Using Atomic Force Microscopy  Laurent Bozec, Michael Horton  Biophysical.
Lori R. Nyland, David W. Maughan  Biophysical Journal 
Felix Ruhnow, David Zwicker, Stefan Diez  Biophysical Journal 
Volume 108, Issue 4, Pages (February 2015)
Volume 97, Issue 8, Pages (October 2009)
Protein in Sugar Films and in Glycerol/Water as Examined by Infrared Spectroscopy and by the Fluorescence and Phosphorescence of Tryptophan  Wayne W.
Microscopic Analysis of Bacterial Motility at High Pressure
Philip J. Robinson, Teresa J.T. Pinheiro  Biophysical Journal 
Volume 101, Issue 7, Pages (October 2011)
Simultaneous Topography and Recognition Imaging Using Force Microscopy
Sergi Garcia-Manyes, Gerard Oncins, Fausto Sanz  Biophysical Journal 
P.J. Caspers, G.W. Lucassen, G.J. Puppels  Biophysical Journal 
Interaction of Oxazole Yellow Dyes with DNA Studied with Hybrid Optical Tweezers and Fluorescence Microscopy  C.U. Murade, V. Subramaniam, C. Otto, Martin.
Mikyung Han, Yuan Mei, Htet Khant, Steven J. Ludtke 
Volume 101, Issue 9, Pages (November 2011)
Bending and Puncturing the Influenza Lipid Envelope
John E. Pickard, Klaus Ley  Biophysical Journal 
Change in Rigidity in the Activated Form of the Glucose/Galactose Receptor from Escherichia coli: A Phenomenon that Will Be Key to the Development of.
Volume 97, Issue 12, Pages (December 2009)
Ping-Jung Su, Wei-Liang Chen, Yang-Fang Chen, Chen-Yuan Dong 
René B. Svensson, Tue Hassenkam, Colin A. Grant, S. Peter Magnusson 
Electroformation of Giant Vesicles from an Inverse Phase Precursor
Volume 101, Issue 7, Pages (October 2011)
Anran Li, Jie Lin, Zhongning Huang, Xiaotian Wang, Lin Guo  iScience 
Presentation transcript:

Surface-Sensitive Raman Spectroscopy of Collagen I Fibrils Corinne Gullekson, Leanne Lucas, Kevin Hewitt, Laurent Kreplak  Biophysical Journal  Volume 100, Issue 7, Pages 1837-1845 (April 2011) DOI: 10.1016/j.bpj.2011.02.026 Copyright © 2011 Biophysical Society Terms and Conditions

Figure 1 Far-field Raman spectrum of Collagen I fibrils. (A) Contact-mode AFM deflection image in air of a dense network of fibrils obtained with a 0.01 N/m MSNL cantilever. (B) Optical image of a sheet of Collagen I fibrils. (C) Raman difference spectra of the sheet and a dense network of fibrils. Positions of the major bands are indicated. The 2432 cm−1 band is attributed to glass. The FWHM of the Amide I bands are 90 cm−1. Biophysical Journal 2011 100, 1837-1845DOI: (10.1016/j.bpj.2011.02.026) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 2 Silver-surface-enhanced Raman spectrum of Collagen I fibrils. (A) Differential interference contrast image of several Collagen I fibrils coated with polydisperse Ag nanoparticles. Each bright dot corresponds to at least one nanoparticle. (B) AFM contact mode height image of 30 nm Ag nanoparticles attached to collagen fibrils on glass obtained in air with a 0.03 N/m MSNL cantilever. (C) Raman spectra single Collagen I fibrils with Ag nanoparticles attached and a spectrum of a fibril without nanoparticles (bottom spectra). The Raman scattering signal was enhanced by a factor of 104. (D) Histogram of peak positions observed in 87 silver SERS spectra of Collagen I fibrils. Biophysical Journal 2011 100, 1837-1845DOI: (10.1016/j.bpj.2011.02.026) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 3 Gold-surface-enhanced Raman spectrum of Collagen I fibrils. (A) Differential interference contrast image of several Collagen I fibrils coated with 65 nm Au nanoparticles. Each bright dot corresponds to at least one nanoparticle. (B) AFM tapping mode height image in air of 65 nm Au nanoparticles attached to collagen fibrils on glass obtained with a TESP-SS cantilever. (C) Raman spectra single Collagen I fibrils with Au nanoparticles attached and a spectrum of a fibril without nanoparticles (bottom). The Raman scattering signal was enhanced by a factor of 105. (D) Histogram of peak positions observed in 87 gold SERS spectra of Collagen I fibrils. Biophysical Journal 2011 100, 1837-1845DOI: (10.1016/j.bpj.2011.02.026) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 4 Tip-enhanced Raman spectrum of Collagen I fibrils. (A) Raman spectra of a single Collagen I fibril with Ag-coated tips in contact with the fibril and out of contact (bottom). The Raman scattering signal was enhanced by a factor of 8000. (B) Histogram of peak positions observed in 154 TERS spectra taken on 15 Collagen I fibrils. Biophysical Journal 2011 100, 1837-1845DOI: (10.1016/j.bpj.2011.02.026) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 5 Tip-enhanced Raman line scan of a Collagen I fibril collected in tapping mode in air at an oscillation amplitude of 10 nm. (A) AFM height image of the Collagen I fibril obtained with a TESP-SS cantilever before Raman line scanning. (White horizontal line across the fibril) The 1.14 μm path of the Raman line scan. (B) The tip-enhanced Raman spectra at different points along the 30 point path. (C) Height profile of the Collagen I fibril after Raman profile (squares) and the intensities of the 1330 (circles) and 1485 cm−1 (triangles) peaks along the Raman line scan. The height profile and the intensity profile at 1330 cm−1 both have a FWHM of 100 nm. Biophysical Journal 2011 100, 1837-1845DOI: (10.1016/j.bpj.2011.02.026) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 6 Spectra of Collagen I fibrils with peaks in the Amide I region generated using TERS and SERS. (A) Tip-enhanced spectra of Collagen I fibrils obtained with a silver-coated 0.01 N/m MSNL tip (1 and 3) and a CONT tip (2). (B) Surface-enhanced spectra of Collagen I fibrils obtained with polydisperse Ag nanoparticles (4), 30 nm Ag nanoparticles (5 and 7), and 65 nm Au nanoparticles (6). Biophysical Journal 2011 100, 1837-1845DOI: (10.1016/j.bpj.2011.02.026) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 7 Comparison of the diffraction-limited and enhanced Raman Amide I peaks for Collagen I fibrils. (A) Peak fitting of the Amide I band observed in a sheet of collagen presented in Fig. 1 B. The positions, height, and FWHM of the Gaussians are presented in Table 1. (B) Histogram of the Amide I peak positions observed in SERS and TERS. The average FWHM of the Amide I band in 42 silver SERS, 37 gold SERS, and 29 silver TERS spectra used were 27 ± 12 cm−1, 22 ± 11 cm−1, and 15 ± 7 cm−1, respectively. Biophysical Journal 2011 100, 1837-1845DOI: (10.1016/j.bpj.2011.02.026) Copyright © 2011 Biophysical Society Terms and Conditions

Figure 8 Proposed orientation of the phenylalanine residue with respect to the metal surface. The coordinate system of the phenyl molecule is shown. Biophysical Journal 2011 100, 1837-1845DOI: (10.1016/j.bpj.2011.02.026) Copyright © 2011 Biophysical Society Terms and Conditions