151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2

Slides:



Advertisements
Similar presentations
investigated by means of the Mössbauer Spectroscopy
Advertisements

Spin reorientation in the Er 2-x Fe 14+2x Si 3 single-crystal studied by Mössbauer spectroscopy J. Żukrowski 1, A. Błachowski 2, K. Ruebenbauer 2, J. Przewoźnik.
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3,
CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
c18cof01 Magnetic Properties Iron single crystal photomicrographs
SDW Induced Charge Stripe Structure in FeTe
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
The new iron-based superconductor Hao Hu The University of Tennessee Department of Physics and Astronomy, Knoxville Course: Advanced Solid State Physics.
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
HARMONICALLY MODULATED STRUCTURES S. M. Dubiel * Faculty of Physics and Computer Science, AGH University of Science and Technology, PL Krakow, Poland.
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
School of Physics and Astronomy, University of Nottingham, UK
Antiferomagnetism and triplet superconductivity in Bechgaard salts
Theory of Optically Induced Magnetization Switching in GaAs:Mn J. Fernandez-Rossier, A. Núñez, M. Abolfath and A. H. MacDonald Department of Physics, University.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
NMR spectroscopy in solids: A comparison to NMR spectroscopy in liquids Mojca Rangus Mentor: Prof. Dr. Janez Seliger Comentor: Dr. Gregor Mali.
Yb valence in YbMn 2 (Si,Ge) 2 J.M. Cadogan and D.H. Ryan Department of Physics and Astronomy, University of Manitoba Winnipeg, MB, R3T 2N2, Canada
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Crystal structure, T-P phase diagram and magnetotransport properties of new organic metal Crystal structure, T-P phase diagram and magnetotransport properties.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
M. Kopcewicz and T. Kulik a ) Institute of Electronic Materials Technology, Warszawa, Wólczyńska Street 133, Poland, a ) Faculty of Materials Science.
Switching of Magnetic Ordering in CeRhIn 5 under Hydrostatic Pressure Kitaoka Laboratory Kazuhiro Nishimoto N. Aso et al., Phys. Rev. B 78, (2009).
Coexistence and Competition of Superconductivity and Magnetism in Ho 1-x Dy x Ni 2 B 2 C Hyeon-Jin Doh, Jae-Hyuk Choi, Heon-Jung Kim, Eun Mi Choi, H. B.
An Introduction to Fe-based superconductors
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
The cerium based ‘115’ materials, CeMIn 5 (M = Co, Rh, Ir), are highly unconventional metals that can display superconductivity, magnetism, or, as we found,
The first-order magnetostructural transition in Gd 5 Sn 4 D.H. Ryan Physics Department, McGill University, Montreal, QC, Canada, H3A 2T8
Electronic phase separation in cobaltate perovskites Z. Németh, Z. Klencsár, Z. Homonnay, E. Kuzmann, A. Vértes Institute of Chemistry, Eötvös Loránd University,
c18cof01 Magnetic Properties Iron single crystal photomicrographs
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Emergent Nematic State in Iron-based Superconductors
Superconductivity with T c up to 4.5 K 3d 6 3d 5 Crystal field splitting Low-spin state:
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
Superconducting Cobaltites Nick Vence. Definition A material which looses its electrical resistivity below a certain temperature (Tc)is said to be superconducting.
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetism of the regular and excess iron in Fe1+xTe
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
Evolution of the orbital Peierls state with doping
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
Mossbauer spectroscopy
Muons in condensed matter research Tom Lancaster Durham University, UK.
Routes for finding superconductors based on structural trends
Phase diagram of FeSe by nematic ultrafast dynamics
NMR study of 133Cs in a new quasi-one-dimensional conducting platinate
Phase transitions from Hadronic to Partonic Worlds L. G. Moretto, K. A
Electric quadrupole interaction in cubic BCC α-Fe
Hyperfine interaction studies in Manganites
Experimental Evidences on Spin-Charge Separation
Special Romp session, LT25
Anisotropic superconducting properties
NICPB, Tallinn, Estonia: R. Stern I. Heinmaa A. Kriisa E. Joon
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Ion-beam, photon and hyperfine methods in nano-structured materials
Pressure-induced Superconductivity in CaFe2As2 -JPCM 20, (2008)
Neutron studies of iron-based superconductors
Information Storage and Spintronics 18
Presentation transcript:

151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2 SUPERCONDUCTOR AND PARENT COMPOUNDS K. Komędera1, A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, S. M. Dubiel3, L. M. Tran4, M. Babij4, Z. Bukowski4  1Mössbauer Spectroscopy Laboratory, Institute of Physics, Pedagogical University, Kraków, Poland 2Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland 3AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland 4Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland ------------------------------------------------------------------------------------------------------ XII Ogólnopolskie Seminarium Spektroskopii Mössbauerowskiej OSSM’2018 Goniądz, 17-20 czerwca 2018

Fe-based Superconductors pnictogens: P, As, Sb chalcogens: S, Se, Te BaFe2As2 SrFe2As2 CaFe2As2 EuFe2As2 KFe2As2 RbFe2As2 CsFe2As2 low Tc superconductors Nonsuperconducting parent compounds

Magnetic structure of EuFe2As2 Two magnetic sublattices Fe2+ 3d itinerant electrons Spin Density Wave Fe saturation moment of 0.988 µB aligned along the long a axis. TSDW=190 K localised Eu2+ 4f electrons, spin S=7/2 µeff= 7.94 µB A-type Antiferromagnet TN=19 K Xiao et al. PRB 80, 174424 2009

Spin density wave (SDW) perpendicular longitudinal commensurate or incommensurate h2n-1 – amplitudes of subsequent harmonics q – wave number of SDW x – relative position of the resonant nucleus along propagation direction of the stationary SDW 4

Spin density wave (SDW) seen by Mössbauer Spectroscopy h2n-1 – amplitudes of subsequent harmonics q – wave number of SDW x – relative position of the resonant nucleus along propagation direction of SDW SDW hyperfine field distribution 57Fe Mössbauer spectrum

Effect of pressure Pressure-suppressed SDW order Pressure-induced superconductivity Persistent Eu2+ magnetic order Kurita et al. PRB 83, 214513 (2011) Kumar et al. Appl. Phys. Lett. 104, 042601 (2014)

Effect of dilution of Eu sublattice with nonmagnetic ions Disappearance of Eu2+ magnetic order SDW order remains intact ? Zapf and Dressel, Rep. Prog. Phys. 80 (2017) 016501

Phase diagram of Eu magnetic ordering in Sn-flux-grown Eu(Fe1−xCox)2As2 single crystals suppression of SDW order superconductivity coexists with Eu ferromagnetism superconductivity competes with Fe SDW antiferromagnetic order W. T. Jin et al., PRB 94, 184513 (2016)

Effect of Co-doping on Eu2+ magnetic ordering in Eu(Fe1−xCox)2As2 single crystals ferromagnetic Eu2+ moment of 6.2μB purely along the c direction Fe2+ moment is estimated to be 0.63(4) μB Neutron diffraction Co concentration x AF CAF F W. T. Jin et al., PRB 94, 184513 (2016)

Electric Field Gradient + Hyperfine field on 151Eu Mössbauer spectroscopy

”122” family of Fe-based superconductors Parent compounds EuFe2As2 Eu0.57Ca0.43Fe2As2 CaFe2As2 Superconductors Eu(Fe0.81Co0.19)2As2 Eu0.73Ca0.27(Fe0.87Co0.13)2As2

Relative Resistivity Parent compounds TSDW (Fe) TN (Eu) EuFe2As2 192 K Eu0.57Ca0.43Fe2As2 195 K ≈10 K CaFe2As2 175 K Superconductor TSC Tre-SC Eu0.73Ca0.27(Fe0.87Co0.13)2As2 12 K 10 K Eu0.73 (Fe0.81Co0.19)2As2 9.5 K

57Fe Mössbauer spectra of parent compound TN (Eu) = 19 K TSDW = 192 K TSDW = 195 K TSDW = 175 K

Spin density wave (SDW) TSDW = 192 K TSDW = 195 K TSDW = 175 K

hyperfine field distribution 57Fe Mӧssbauer spectra hyperfine field distribution shape of SDW Spin density wave (SDW) Eu0.57Ca0.43Fe2As2 TSDW = 195 K

Mean squared amplitudes of SDW versus temperature Total spectral shift versus temperature

57Fe Mössbauer spectra of EuFe2As2-based superconductors Hyperfine transferred field from Eu to Fe about 1T

151Eu Mössbauer spectroscopy

151Eu Mössbauer spectroscopy 151Eu Mӧssbauer effect shift scale Nuclear energy levels of 151Eu in the presence of quadrupol interaction Nuclear energy levels for 151Eu in the presence of a magnetic hyperfine interaction G. J. Long et al. (eds.), Mössbauer Spectroscopy Applied to Inorganic Chemistry © Springer Science+Business Media New York 1989

151Eu Mössbauer spectroscopy

151Eu Mössbauer spectra Parent compounds TSDW = 192 K Superconductor TSC = 9.5 K Parent compounds TSDW = 195 K Superconductor TSC = 12 K

Conclusions The SDW develops in a similar fashion for the compound Eu0.57Ca0.43Fe2As2 as for parent EuFe2As2. In superconductors Eu(Fe0.81Co0.19)2As2, Eu0.73Ca0.27(Fe0.87Co0.13)2As2 hyperfine transferred field from Eu to Fe is about 1T. Eu2+ orders magnetically regardless of the Co and Ca substitution . Europium moments rotate from the a-axis in the direction of the c-axis (within a-c plane). Europium magnetic order and superconductivity coexist.